Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment V.

1. Problem 1.

a) Find the value e^z for $z = \frac{\pi i}{2}, \frac{3\pi i}{4}$.

b) For what values of z is e^z equal to 2, -1, i, -i/2, -1 - i?

c) Find the real and imaginary parts of e^{e^z} .

d) Determine the values of 2^i , i^i , $(-1)^{2i}$.

e) Express $\arctan w$ in terms of the logarithm.

2. Problem 2.

a) Let $\Re a > 0$. The points of **C** can be divided into three sets, according to whether

$$\left|\frac{a-z}{\bar{a}+z}\right|$$

is smaller, equal, or larger than 1. Describe these sets. Where does ∞ belong?

Hint: Look at the sign of $-\Re((a + \bar{a})z)$.

b) Let all zeros of the polynomial

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$

to be located in the upper-half plane $\Im z > 0$. Denote $a_k = \alpha_k + i\beta_k, \ \alpha_k, \beta_k \in \mathbf{R}$. Show that

$$U(z) = \alpha_n z^n + \alpha_{n-1} z^{n-1} + \dots + \alpha_0,$$

$$V(z) = \beta_n z^n + \beta_{n-1} z^{n-1} + \dots + \beta_0,$$

have only real zeros by proving \aleph), \beth), \beth).

ℵ) Let

$$P(z) = U(z) + iV(z) = a_0(z - z_1)(z - z_2)...(z - z_n), \qquad a_0 \neq 0.$$

Prove that

$$U(x) + iV(x) = U(x) - iV(x)$$
 or $U(x) + iV(x) = -(U(x) - iV(x)),$

provided x is a root of V(x) = 0 or U(x) = 0.

 \Box) Prove that

$$a_0(x-z_1)(x-z_2)...(x-z_n) = \pm \bar{a}_0(x-\bar{z}_1)(x-\bar{z}_2)...(x-\bar{z}_n).$$

J) Assume that, say, $\Im x > 0$. Observe that then $|x - z_k| < |x - \overline{z}_k|$, which is impossible. Why?

3. Problem 3.

a) Find the set A_n of $z \in \mathbf{C}$ such that the *n*-th term, $z^n/n!$, n = 0, 1, 2, ..., of the series

$$1 + \frac{z}{1!} + \frac{z^2}{2!} + \ldots + \frac{z^k}{k!} + \ldots$$

exceeds the rest of the terms in absolute value, i.e., $|z^n/n!| \ge |z^k/k!|$ for $k \ne n$. b)* Let

$$a_0 \neq 0, \qquad a_0 + a_1 z + \dots + a_n z^n + \dots$$

be everywhere convergent and "never-ending" power series. Is it possible to divide the complex plane into disjoint open regions C_n , enclosed by concentric circles about the origin, such that in each C_n , $|a_n z^n| > |a_k z^k|$ for each $k \neq n$?

Hint: No term could be maximal in absolute value for all z. When |z| increases, the number n = n(z), such that $|a_n z^n| \ge |a_k z^k|$ for $k \ne n$, can only increase.

4. Problem 4.

a) Show how to define the "angles" in a triangle, bearing in mind that they should lie between 0 and π . With this definition, prove that the sum of the angles is π .

b) Let P(z) be a polynomial of degree $n, n \ge 2$, and let $a \ne b$ be such that $P(a) \ne P(b)$. Assume also that B is the *closed* set enclosed by two arcs, from which the segment ab is seen at the angle π/n . Prove that for any $\gamma \in [P(a), P(b)]$, there exists at least one solution $P(z) = \gamma$ with $z \in B$.

Hint: Let z_k be a root of $P(z) - \gamma$,

$$P(z) - \gamma = a_0(z - z_1)(z - z_2)...(z - z_n),$$

where $\gamma = tP(a) + (1-t)P(b), t \in (0,1)$. If $z_k \notin B$, then

$$-\frac{\pi}{n} < \arg \frac{a - z_k}{b - z_k} < \frac{\pi}{n}.$$

What can you say about

$$\arg \frac{P(a) - \gamma}{P(b) - \gamma}$$
?