Complex Analysis, Spring 2011. Instructor: Dmitry Ryabogin Assignment V.

1. Problem 1.

a) Find the value e^{z} for $z=\frac{\pi i}{2}, \frac{3 \pi i}{4}$.
b) For what values of z is e^{z} equal to $2,-1, i,-i / 2,-1-i$?
c) Find the real and imaginary parts of $e^{e^{z}}$.
d) Determine the values of $2^{i}, i^{i},(-1)^{2 i}$.
e) Express $\arctan w$ in terms of the logarithm.

2. Problem 2.

a) Let $\Re a>0$. The points of \mathbf{C} can be divided into three sets, according to whether

$$
\left|\frac{a-z}{\bar{a}+z}\right|
$$

is smaller, equal, or larger than 1. Describe these sets. Where does ∞ belong?
Hint: Look at the sign of $-\Re((a+\bar{a}) z)$.
b) Let all zeros of the polynomial

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}
$$

to be located in the upper-half plane $\Im z>0$. Denote $a_{k}=\alpha_{k}+i \beta_{k}, \alpha_{k}, \beta_{k} \in \mathbf{R}$. Show that

$$
\begin{aligned}
& U(z)=\alpha_{n} z^{n}+\alpha_{n-1} z^{n-1}+\ldots+\alpha_{0}, \\
& V(z)=\beta_{n} z^{n}+\beta_{n-1} z^{n-1}+\ldots+\beta_{0},
\end{aligned}
$$

have only real zeros by proving $\aleph), ~ \beth), ~ \beth) . ~$
$\aleph)$ Let

$$
P(z)=U(z)+i V(z)=a_{0}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right), \quad a_{0} \neq 0 .
$$

Prove that

$$
U(x)+i V(x)=U(x)-i V(x) \quad \text { or } \quad U(x)+i V(x)=-(U(x)-i V(x)),
$$

provided x is a root of $V(x)=0$ or $U(x)=0$.
च) Prove that

$$
a_{0}\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n}\right)= \pm \bar{a}_{0}\left(x-\bar{z}_{1}\right)\left(x-\bar{z}_{2}\right) \ldots\left(x-\bar{z}_{n}\right) .
$$

J) Assume that, say, $\Im x>0$. Observe that then $\left|x-z_{k}\right|<\left|x-\bar{z}_{k}\right|$, which is impossible. Why?

3. Problem 3.

a) Find the set A_{n} of $z \in \mathbf{C}$ such that the n-th term, $z^{n} / n!, n=0,1,2, \ldots$, of the series

$$
1+\frac{z}{1!}+\frac{z^{2}}{2!}+\ldots+\frac{z^{k}}{k!}+\ldots
$$

exceeds the rest of the terms in absolute value, i.e., $\left|z^{n} / n!\right| \geq\left|z^{k} / k!\right|$ for $k \neq n$.
b)* Let

$$
a_{0} \neq 0, \quad a_{0}+a_{1} z+\ldots+a_{n} z^{n}+\ldots
$$

be everywhere convergent and "never-ending" power series. Is it possible to divide the complex plane into disjoint open regions C_{n}, enclosed by concentric circles about the origin, such that in each $C_{n},\left|a_{n} z^{n}\right|>\left|a_{k} z^{k}\right|$ for each $k \neq n$?
Hint: No term could be maximal in absolute value for all z. When $|z|$ increases, the number $n=n(z)$, such that $\left|a_{n} z^{n}\right| \geq\left|a_{k} z^{k}\right|$ for $k \neq n$, can only increase.
4. Problem 4.
a) Show how to define the "angles" in a triangle, bearing in mind that they should lie between 0 and π. With this definition, prove that the sum of the angles is π.
b) Let $P(z)$ be a polynomial of degree $n, n \geq 2$, and let $a \neq b$ be such that $P(a) \neq P(b)$. Assume also that B is the closed set enclosed by two arcs, from which the segment $a b$ is seen at the angle π / n. Prove that for any $\gamma \in[P(a), P(b)]$, there exists at least one solution $P(z)=\gamma$ with $z \in B$.
Hint: Let z_{k} be a root of $P(z)-\gamma$,

$$
P(z)-\gamma=a_{0}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right),
$$

where $\gamma=t P(a)+(1-t) P(b), t \in(0,1)$. If $z_{k} \notin B$, then

$$
-\frac{\pi}{n}<\arg \frac{a-z_{k}}{b-z_{k}}<\frac{\pi}{n}
$$

What can you say about

$$
\arg \frac{P(a)-\gamma}{P(b)-\gamma} ?
$$

