Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin Assignment VI.

1. Problem 1.

a) Find a linear transformation (function) that transforms a triangle with vertices at $0,1, i$ onto a similar triangle with vertices at $0,2,1+i$.
b) Find a linear transformation with a fixed point $1+2 i$ that transforms i into $-i$.
c) For $w=2 z+1-3 i$ find a finite fixed point z_{0}, an angle θ of rotation about z_{0}, and a linear change of scale at z_{0}.
d) Find a general form of a linear transformation that transforms the upper-half plane onto itself.
e) Find a general form of a linear transformation that transforms the upper-half plane onto the lower-half plane.

2. Problem 2.

a) Prove that the reflection $z \rightarrow \bar{z}$ is not a linear fractional transformation.
b) If

$$
T_{1} z=\frac{z+2}{z+3}, \quad T_{2} z=\frac{z}{z+1}
$$

find $T_{1} T_{2} z, T_{2} T_{1} z$ and $T_{1}^{-1} T_{2} z$.
c) Show that any fractional linear transformation which transforms the real axis into itself can be written with real coefficients.

3. Problem 3.

a) Give a precise definition of a single-valued branch of $\sqrt{1+z}+\sqrt{1-z}$ in a suitable region, and prove that it is analytic.
b) Same problem for $\log \log z$.
c) Suppose that $f(z)$ is analytic and satisfies the condition $\left|f(z)^{2}-1\right|<1$ in a region
Ω. Show that either $\Re f(z)>0$ or $\Re f(z)<0$ throughout Ω.
4. Problem 4.
a) Let $E \subset \mathbf{C}$ be a region with area $A(E)$ that can be evaluated as a double Riemann integral

$$
A(E)=\iint_{E} d x d y
$$

If f is a conformal mapping of an open set containing E, show that the area $A\left(E^{\prime}\right)$ of the image $E^{\prime}=f(E)$ is given by

$$
A\left(E^{\prime}\right)=\iint_{E}\left|f^{\prime}(z)\right|^{2} d x d y
$$

Hint: Use the change of variables formula in double integrals, then apply CauchyRiemann equations.
b) Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be one-to-one and analytic in the disc $D=\{z:|z|<1\}$.

Prove that $A(f(D)) \geq \pi$, and $A(f(D))=\pi$ only provided $f(z)=z$.
Hint: Use a) together with $\left|f^{\prime}(z)\right|^{2}=f^{\prime}(z) \overline{f^{\prime}(z)}$ and

$$
\iint_{D} z^{m} \bar{z}^{n} d x d y=\int_{0}^{1} r^{m+n+1} d r \int_{0}^{2 \pi} e^{i(m-n) \theta} d \theta=0 \quad \text { for } \quad m \neq n
$$

