Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin

 Assignment VIII.

 Assignment VIII.}

1. Problem 1.

a) If $z_{1}, z_{2}, z_{3}, z_{4}$ are points on the circle, show that z_{1}, z_{3}, z_{4} and z_{2}, z_{3}, z_{4} determine the same orientation iff $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)>0$.
b) Prove that every reflection carries circles into circles.
c) Suppose circles C_{1}, C_{2} are both symmetric with respect to a line l, and C_{3} is the reflection image of C_{1} with respect to C_{2}. Then C_{3} is also symmetric with respect to the line l, compare with the symmetry principle!
Hint: Let l be the real axis, and let the center of C_{2} be on the real axis. What is the relation between z and z^{*} ?
d) Reflect \aleph) the imaginary axis, \beth) the line $x=y$, and \beth) the circle $|z|=1$, in the circle $|z-2|=1$.
Hint: $\operatorname{In} \aleph$) and \beth) use the real axis as l. In $\beth)$ use $x+y=2$.

2. Problem 2.

a) Find the linear transformation which carries $|z|=1$ and $|z-1 / 4|=1 / 4$ into concentric circles. What is the ratio of the radii?

Hint: Use Problem 3 d) of Assignment VII with $R=1$. If $0 \rightarrow-\beta, 1 / 2 \rightarrow \beta$, what is β ?
b) Same problem for $|z|=1$ and $x=2$.

Hint: Use $w=1 / z$.
c) Find all circles which are orthogonal to $|z|=1$ and $|z-1|=4$.

Hint: Use the inversion that transforms the given circles into concentric ones.

3. Problem 3.

a) Find the fixed points of the linear transformations

$$
\begin{array}{llll}
\text { «) } w=\frac{z}{2 z-1}, & \text { 乙) } w=\frac{2 z}{3 z-1}, & \text { 】) } w=\frac{3 z-4}{z-1}, & \text { 7) } w=\frac{z}{2-z} .
\end{array}
$$

Is any of transformations elliptic, hyperbolic, parabolic?
b) Suppose that the coefficients of the transformation $S z=(a z+b) /(c z+d)$ are normalized by $a d-b c=1$. Show that S is elliptic iff $-2<a+d<2$, parabolic if $a+d= \pm 2$, hyperbolic if $a+d<-2$ or >2.

4. Problem 4.

a) Show that a linear transformation which satisfies $S^{n} z=z$ for some integer n is necessary elliptic.

Hint: Consider the number of fixed points. If there are two distinct finite fixed points a and b, say. Then,

$$
\frac{z-a}{z-b}=\frac{S^{n} z-a}{S^{n} z-b}=k \frac{S^{n-1} z-a}{S^{n-1} z-b}=k^{2} \frac{S^{n-2} z-a}{S^{n-2} z-b}=\ldots
$$

If S has only one fixed point, consider $T z=1 /(z-a)+a$ and observe $T S T^{-1}$ has only ∞ as a fixed point. Hence, $T S T^{-1} z=c z+d$, and $c=1$.
b) If S is hyperbolic or loxodromic, show that $S^{n} z$ converges to a fixed point as $n \rightarrow \infty$, the same for all z, except when z coincides with the other fixed point, (the limit is the attractive, the other the repellent fixed point). What happens when $n \rightarrow-\infty$? What happens in the parabolic case?
Hint: Let at first two fixed points z_{1}, z_{2} be finite. Passing to "new coordinates", we can write $v=L(\xi)=K \xi$, where

$$
v=\frac{w-z_{1}}{w-z_{2}}, \quad \xi=\frac{z-z_{1}}{z-z_{2}} .
$$

Hence, $L(L(\ldots L(\xi)))=K^{n} \xi \ldots$

