Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment VIII.

1. Problem 1.

a) If z_1 , z_2 , z_3 , z_4 are points on the circle, show that z_1 , z_3 , z_4 and z_2 , z_3 , z_4 determine the same orientation iff $(z_1, z_2, z_3, z_4) > 0$.

b) Prove that every reflection carries circles into circles.

c) Suppose circles C_1, C_2 are both symmetric with respect to a line l, and C_3 is the reflection image of C_1 with respect to C_2 . Then C_3 is also symmetric with respect to the line l, compare with the symmetry principle!

Hint: Let *l* be the real axis, and let the center of C_2 be on the real axis. What is the relation between *z* and z^* ?

d) Reflect \aleph) the imaginary axis, \beth) the line x = y, and \beth) the circle |z| = 1, in the circle |z - 2| = 1.

Hint: In \aleph) and \beth) use the real axis as *l*. In \beth) use x + y = 2.

2. Problem 2.

a) Find the linear transformation which carries |z| = 1 and |z - 1/4| = 1/4 into concentric circles. What is the ratio of the radii?

Hint: Use Problem 3 d) of Assignment VII with R = 1. If $0 \to -\beta$, $1/2 \to \beta$, what is β ?

b) Same problem for |z| = 1 and x = 2.

Hint: Use w = 1/z.

c) Find all circles which are orthogonal to |z| = 1 and |z - 1| = 4.

Hint: Use the inversion that transforms the given circles into concentric ones.

3. Problem 3.

a) Find the fixed points of the linear transformations

Is any of transformations elliptic, hyperbolic, parabolic?

b) Suppose that the coefficients of the transformation Sz = (az + b)/(cz + d) are normalized by ad - bc = 1. Show that S is elliptic iff -2 < a + d < 2, parabolic if $a + d = \pm 2$, hyperbolic if a + d < -2 or > 2.

4. Problem 4.

a) Show that a linear transformation which satisfies $S^n z = z$ for some integer n is necessary elliptic.

Hint: Consider the number of fixed points. If there are two distinct finite fixed points a and b, say. Then,

$$\frac{z-a}{z-b} = \frac{S^n z - a}{S^n z - b} = k \frac{S^{n-1} z - a}{S^{n-1} z - b} = k^2 \frac{S^{n-2} z - a}{S^{n-2} z - b} = \dots$$

If S has only one fixed point, consider Tz = 1/(z-a) + a and observe TST^{-1} has only ∞ as a fixed point. Hence, $TST^{-1}z = cz + d$, and c = 1.

b) If S is hyperbolic or loxodromic, show that $S^n z$ converges to a fixed point as $n \to \infty$, the same for all z, except when z coincides with the other fixed point, (the limit is the *attractive*, the other the *repellent* fixed point). What happens when $n \to -\infty$? What happens in the parabolic case?

Hint: Let at first two fixed points z_1 , z_2 be finite. Passing to "new coordinates", we can write $v = L(\xi) = K\xi$, where

$$v = \frac{w - z_1}{w - z_2}, \qquad \xi = \frac{z - z_1}{z - z_2}.$$

Hence, $L(L(...L(\xi))) = K^n \xi ...$