Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin Assignment IX.

1. Problem 1.

a) Map the common part of the discs $|z|<1$ and $|z-1|<1$ on the inside of the unit circle.
Hint: Use $w=(z-a)(z-b)$.
b) Map the region between $|z|=1$ and $|z-1 / 2|=1 / 2$ on the inside of the unit circle.

Hint: Use $w=1 /(z-a)$.
c) Map the complement of the arc $|z|=1, y \geq 0$ on the outside of the unit circle.

Hint: Map the region onto the complement of the segment $\Im z=0,-1 \leq \Re z \leq 1$, (the wedge).

2. Problem 2.

a) Map the outside of the parabola $y^{2}=2 p x$ on the disc $|w|<1$ so that $z=0$ and $z=-p / 2$ correspond to $w=1$ and $w=0$.
b) Map the inside of the right-hand branch of the hyperbola $x^{2}-y^{2}=a^{2}$ on the unit disc $|w|<1$ so that the focus corresponds to $w=0$ and the vertex to $w=-1$.
c) Map the inside of the lemniscate $\left|z^{2}-a^{2}\right|=\rho^{2}, \rho>a$, on the disc $|w|<1$.
d) Map the outside of the ellipse $(x / a)^{2}+(y / b)^{2}=1$ onto $|w|<1$.

Hint: Find s such that $r+1 / r=a s, 1 / r-r=b s$.

3. Problem 3.

a) Let a fractional linear transformation carrying a unit disc into itself be

$$
w=e^{i \alpha} \frac{z-a}{1-\bar{a} z}, \quad|a|<1, \quad a=|a| e^{i \lambda}
$$

Prove that it can be hyperbolic, parabolic and elliptic, but not loxodromic.
Hint: Compute K and use $\cos \alpha=\left(e^{i \alpha}+e^{-i \alpha}\right) / 2, \sin \alpha=\left(e^{i \alpha}-e^{-i \alpha}\right) /(2 i)$.
b) Describe a for which each of these cases occurs.
c) Find fixed points and bring the transformation to the normal form.

Hint: Put $|a|=\sin (\alpha / 2) \sin \beta$ for some $\beta \in(0, \pi)$ when w is elliptic. If w is hyperbolic, put $|a| \sin \beta=\sin (\alpha / 2)$.
d) Find $\arg w\left(e^{i \phi}\right)=\theta(\phi)$.
e) Find $w^{\prime}(0), w^{\prime}(a)$.
f) What part of the unit disc is dilated, what part is shrinking?
g) Find $\max \left|w^{\prime}(z)\right|, \min \left|w^{\prime}(z)\right|$ for $|z| \leq 1$.

