Complex Analysis, Spring 2011. Instructor: Dmitry Ryabogin Assignment IX.

1. Problem 1.

a) Map the common part of the discs |z| < 1 and |z - 1| < 1 on the inside of the unit circle.

Hint: Use w = (z - a)(z - b).

b) Map the region between |z| = 1 and |z - 1/2| = 1/2 on the inside of the unit circle. Hint: Use w = 1/(z - a).

c) Map the complement of the arc |z| = 1, $y \ge 0$ on the outside of the unit circle.

Hint: Map the region onto the complement of the segment $\Im z = 0, -1 \leq \Re z \leq 1$, (the wedge).

2. **Problem 2.**

a) Map the outside of the parabola $y^2 = 2px$ on the disc |w| < 1 so that z = 0 and z = -p/2 correspond to w = 1 and w = 0.

b) Map the inside of the right-hand branch of the hyperbola $x^2 - y^2 = a^2$ on the unit disc |w| < 1 so that the focus corresponds to w = 0 and the vertex to w = -1.

c) Map the inside of the lemniscate $|z^2 - a^2| = \rho^2$, $\rho > a$, on the disc |w| < 1.

d) Map the outside of the ellipse $(x/a)^2 + (y/b)^2 = 1$ onto |w| < 1.

Hint: Find s such that r + 1/r = as, 1/r - r = bs.

3. Problem 3.

a) Let a fractional linear transformation carrying a unit disc into itself be

$$w = e^{i\alpha} \frac{z-a}{1-\bar{a}z}, \qquad |a| < 1, \qquad a = |a|e^{i\lambda}.$$

Prove that it can be hyperbolic, parabolic and elliptic, but not loxodromic.

Hint: Compute K and use $\cos \alpha = (e^{i\alpha} + e^{-i\alpha})/2$, $\sin \alpha = (e^{i\alpha} - e^{-i\alpha})/(2i)$.

b) Describe a for which each of these cases occurs.

c) Find fixed points and bring the transformation to the normal form.

Hint: Put $|a| = \sin(\alpha/2) \sin \beta$ for some $\beta \in (0, \pi)$ when w is elliptic. If w is hyperbolic, put $|a| \sin \beta = \sin(\alpha/2)$.

- d) Find $\arg w(e^{i\phi}) = \theta(\phi)$.
- e) Find w'(0), w'(a).
- f) What part of the unit disc is dilated, what part is shrinking?
- g) Find $\max |w'(z)|$, $\min |w'(z)|$ for $|z| \le 1$.