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a b s t r a c t

We use Fourier transform techniques to prove a result on detecting symmetry in convex
and star bodies with the help of conical sections. Our methods also allow us to give a new
proof of the well-known theorem of Makai, Martini and Ódor about maximal hyperplane
sections passing through the same point.
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1. Introduction

Let K be a convex body in Rn, i.e. a compact convex set with a non-empty interior. We say that K is origin-symmetric
if K = −K . The presence of origin-symmetry is an essential assumption in various problems. Many results that hold for
origin-symmetric convex bodies fail in the absence of the symmetry condition. For example, origin-symmetric convex
bodies are uniquely determined by the volumes of their projections or central sections, while this is not true for general
convex bodies; see [1]. Thus, detecting symmetry in convex bodies is one of the fundamental questions in convex geometry
and geometric tomography. For some results in this direction the reader is referred to [2–10]; see also [11] for open
problems.

In this paper we suggest a new method of detecting symmetry. Let K be a star body and let C(ξ , z) be the cone
{x ∈ Rn

: x · ξ = |x|z}, where ξ ∈ Sn−1, z ∈ (−1, 1), and x · ξ = x1ξ1 + x2ξ2 + · · · + xnξn is the usual inner product
in Rn. In this notation, z is the cosine of the angle between x and ξ . For z ∈ (−1, 1), we define the conical section function
CK ,ξ (z) by

CK ,ξ (z) = voln−1(K ∩ C(ξ , z)).

In the picture below, the shaded part represents the intersection K ∩ C(ξ , z), and α = arccos z.
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Clearly, if K is an origin-symmetric star body, then for each ξ the function CK ,ξ (z) is an even function of z, and therefore
has a critical point at z = 0. In this paper we show that the converse statement is also true.

Theorem 1.1. Let K be a C1 star body in Rn. Assume that for each ξ ∈ Sn−1 the function CK ,ξ (z) has a critical point at z = 0.
Then the body K is origin-symmetric.

This theorem is an analog of the result by Makai et al. [9], which can be stated as follows.

Theorem 1.2. Let K be a C1 star body in Rn. If for every ξ ∈ Sn−1 the function AK ,ξ (t) has a critical point at t = 0, then K is
origin-symmetric.

Here, AK ,ξ (t) is the parallel section function defined by

AK ,ξ (t) = voln−1(K ∩ (ξ⊥
+ tξ)), t ∈ R,

and ξ⊥
= {x ∈ Rn

: x · ξ = 0} is the hyperplane passing through the origin and orthogonal to the vector ξ .
Makai et al. proved Theorem 1.2 in the class of convex bodies, in which case the C1-smoothness assumption can be

dropped. Using the same reasoning (see [9, Lemma 3.5] for details), it can be shown that Theorem 1.1 also holds true for
convex bodies without the smoothness assumption.

The techniques that we use in this paper were developed by Koldobsky (see [12]) and are based on the Fourier transform
of distributions. Using these methods we also give a new and short proof of Theorem 1.2.

The study of properties of convex bodies using the information about the areas of their planar sections is the classical
problem of geometric tomography. However, a natural question of what happens if plane sections are replaced by sections
by other surfaces has not been studied well. In this note we make a step in this direction by considering sections by conical
surfaces. In fact, a lot of problems like determination of symmetric bodies by central sections, the Busemann–Petty problem
and others can be asked in the setting of surfaces; see [13] for some results. These problems may be quite difficult, but they
belong to a new interesting direction.

2. Notation and auxiliary results

A body is a compact set equal to the closure of its interior. If K is a body containing the origin in its interior and star-shaped
with respect to the origin, its radial function is defined by

ρK (x) = max{a ≥ 0 : ax ∈ K},

for x ∈ Rn
\ {0}. If ξ ∈ Sn−1, then ρK (ξ) is the distance from the origin to the point on the boundary in the direction of

ξ . A body K is called a star body if its radial function is positive and continuous. We say that a star body K is of class Ck if
ρK ∈ Ck(Sn−1). The Minkowski functional of a star body K ⊂ Rn is defined by

∥x∥K = min{a ≥ 0 : x ∈ aK}, x ∈ Rn.

It easy to see that ρK (x) = ∥x∥−1
K for x ∈ Rn

\ {0}.
The main tool that we use in this paper is the Fourier transform of distributions. For the background information, the

reader is referred to the books by Gelfand and Shilov [14] and by Koldobsky [12].
Let S(Rn) be the Schwartz space of rapidly decreasing infinitely differentiable functions on Rn. Elements of this space

are referred to as test functions. Distributions are the elements of the dual space, S′(Rn), of linear continuous functionals on
S(Rn). The action of a distribution f on a test function φ is denoted by ⟨f , φ⟩.
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Let φ ∈ S(R). The fractional derivative of the function φ of order q ∈ C at zero is defined as follows

φ(q)(0) =


t−1−q
+

Γ (−q)
, φ(t)


,

where t+ = max{0, t}.
If ℜq < 0, then the function t−1−q is locally integrable and the above fractional derivative is equal to

φ(q)(0) =
1

Γ (−q)


∞

0
t−1−qφ(t)dt.

This integral can be written in the following form; see [12, Sec. 2.5 and 2.6] for details:

φ(q)(0) =
1

Γ (−q)

 1

0
t−1−q


φ(t) − φ(0) − · · · − φ(m−1)(0)

tm−1

(m − 1)!


dt

+
1

Γ (−q)


∞

1
t−1−qφ(t)dt +

1
Γ (−q)

m−1
k=0

φ(k)(0)
k!(k − q)

.

Note that the latter expressionmakes sense for qwith−1 < ℜq < m, q ≠ 0, 1, . . . ,m−1, and this is how φ(q)(0) is defined
for these values of q.

If k ≥ 0 is an integer, we define the fractional derivative of the order k as the limit of the latter expression as q → k, then
we get

φ(k)(0) = (−1)k
dk

dtk
φ(t)


t=0

,

i.e. fractional derivatives of integral orders coincide up to a sign with ordinary derivatives. Thus defined, φ(q)(0) is an entire
function of the variable q ∈ C. Note that the fractional derivatives φ(q)(0) can also be defined if φ is a continuous function
with compact support and sufficiently differentiable in a neighborhood of zero.

The Fourier transform of φ ∈ S(Rn) is defined by

φ̂(x) =


Rn

φ(y)e−ix·y dy for x ∈ Rn.

The Fourier transform of a distribution f is defined by its action on a test function as follows:

⟨f̂ , φ⟩ = ⟨f , φ̂⟩,

for any test function φ.
Our main tool is the Fourier transform of homogeneous distributions on Rn. For f ∈ C∞


Sn−1


and p ∈ C, we denote by

fp the homogeneous degree −n + p extension of f to Rn
\ {0}. Thus,

fp(x) = |x|−n+pf


x
|x|


for x ≠ 0.

Formulas for the Fourier transform of fp were obtained in the case of even functions in [15] (see also [12]) and in the
general case in [16]. We will need the following auxiliary function. For f ∈ C


Sn−1


and ξ ∈ Sn−1, the function Fξ is defined

by

Fξ (t) = (1 − t2)(n−3)/2

Sn−1∩ξ⊥

f (t ξ +


1 − t2 ζ ) dζ , t ∈ (−1, 1).

If Φ is an integrable function on [−1, 1], then 1

−1
Φ(t)Fξ (t)dt =


Sn−1

Φ(θ · ξ)f (θ)dθ;

cf. [4] or [17].
If 0 < ℜp < 1, then the Fourier transform of fp is a homogeneous function of degree −p on Rn

\ {0} given by

f̂p(x) = Γ (p) cos
pπ
2


Sn−1

|x · θ |
−pf (θ) dθ − iΓ (p) sin

pπ
2


Sn−1

|x · θ |
−psgn (x · θ)f (θ) dθ. (1)
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Using regularization, as in the case of fractional derivatives, one can obtain formulas for f̂p when ℜp ≥ 1. In particular,
for p = 1, 3, . . . , we have

f̂p(ξ) = −i(−1)(p−1)/2(p − 1)!

 1

−1
|t|−psgn t


Fξ (t) −

p−1
j=0

t j

j!
F (j)
ξ (0)


dt +


0≤j≤p−1

j odd

2
j!(1 + j − p)

F (j)
ξ (0)



+ (−1)(p−1)/2πF (p−1)
ξ (0),

whereas, for p = 2, 4, . . . ,

f̂p(ξ) = (−1)p/2(p − 1)!

 1

−1
|t|−p


Fξ (t) −

p−1
j=0

t j

j!
F (j)
ξ (0)


dt +


0≤j≤p−1
j even

2
j!(1 + j − p)

F (j)
ξ (0)


+ i(−1)p/2πF (p−1)

ξ (0).

Remark 1. It follows from the proof of these formulas that assumption f ∈ C∞

Sn−1


can be relaxed. For example, if

0 < ℜp < 1, formula (1) remains valid for f ∈ C

Sn−1


. If p is an integer, then it is enough to require that f ∈ Cp


Sn−1


.

3. Proofs of results

Proof of Theorem 1.1. Consider the following auxiliary function

GK ,ξ (z) =


(1 − z2)−1/2

· voln−1(K ∩ C(ξ , z)), |z| < 1,
0, |z| ≥ 1.

By our assumption, G
′

K ,ξ (0) = 0 for all ξ ∈ Sn−1.
First, we establish the following formula:

GK ,ξ (z) =


1

n − 1
(1 − z2)(n−3)/2


Sn−1∩ξ⊥

ρn−1
K (zξ +


1 − z2θ)dθ, |z| < 1,

0, |z| ≥ 1.
(2)

In order to prove (2), we compute voln−1(K ∩ C(ξ , z)) using the idea from [13]. Denote by (K ∩ C(ξ , z))|ξ⊥ the orthogonal
projection of K ∩ C(ξ , z) onto the hyperplane ξ⊥. Let α = arccos z. The cosine of the angle between the generating lines of
the cone C(ξ , z) and the hyperplane ξ⊥ equals sinα = (1 − z2)1/2. Projecting K ∩ C(ξ , z) onto the hyperplane ξ⊥, we get

voln−1

(K ∩ C(ξ , z))|ξ⊥


= (1 − z2)1/2voln−1(K ∩ C(ξ , z)). (3)

Let θ ∈ Sn−1
∩ ξ⊥. Then the radius of (K ∩ C(ξ , z))|ξ⊥ in the direction of θ is equal to sinα · ρK (cosαξ + sinαθ).

Therefore, computing the volume of the projection in polar coordinates, we get

voln−1

(K ∩ C(ξ , z))|ξ⊥


=

1
n − 1


Sn−1∩ξ⊥

(sinα)n−1ρn−1
K (cosαξ + sinαθ) dθ.

Combining the latter formula with (3), we get

voln−1 (K ∩ C(ξ , z)) =
(1 − z2)(n−2)/2

n − 1


Sn−1∩ξ⊥

ρn−1
K (zξ +


1 − z2θ) dθ.

Thus, formula (2) is proved.
Now we compute fractional derivatives of order q at z = 0 for the function GK ,ξ (z). Our goal is to show that

G(q)
K ,ξ (0) =

cos(qπ/2)
2π(n − 1)


∥x∥−n+1

K |x|q + ∥ − x∥−n+1
K |x|q

∧
(ξ)

−
i sin(qπ/2)
2π(n − 1)


∥x∥−n+1

K |x|q − ∥ − x∥−n+1
K |x|q

∧
(ξ). (4)

First we assume that −1 < ℜq < 0 and then use the analytic extension. We have

G(q)
K ,ξ (0) =

1
Γ (−q)


∞

0
z−1−qGK ,ξ (z)dz

=
1

2Γ (−q)


R


|z|−1−q

+ |z|−1−qsgn z

GK ,ξ (z)dz
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=
1

2(n − 1)Γ (−q)

 1

−1


|z|−1−q

+ |z|−1−qsgn z

(1 − z2)(n−3)/2


Sn−1∩ξ⊥

ρn−1
K (zξ +


1 − z2θ)dθdz

=
1

2(n − 1)Γ (−q)


Sn−1


|x · ξ |

−1−q
+ |x · ξ |

−1−qsgn (x · ξ)

ρn−1
K (x) dx

=
1

4(n − 1)Γ (−q)


Sn−1

|x · ξ |
−1−q ρn−1

K (x) + ρn−1
K (−x)


dx

+
1

4(n − 1)Γ (−q)


Sn−1

|x · ξ |
−1−qsgn (x · ξ)


ρn−1
K (x) − ρn−1

K (−x)

dx.

The latter equality allows us to considerG(q)
K ,ξ (t) as a function of ξ ∈ Rn

\{0}, andwrite it in terms of the Fourier transform.
By virtue of formula (1),

G(q)
K ,ξ (0) = −

1
4(n − 1)Γ (−q)Γ (q + 1) sin(qπ/2)


∥x∥−n+1

K |x|q + ∥ − x∥−n+1
K |x|q

∧
(ξ)

+
i

4(n − 1)Γ (−q)Γ (q + 1) cos(qπ/2)


∥x∥−n+1

K |x|q − ∥ − x∥−n+1
K |x|q

∧
(ξ).

Since

Γ (−q)Γ (q + 1) = −
π

sin qπ
,

(see [12, p. 31]), formula (4) is proved for the range −1 < ℜq < 0. It can be extended to −1 < ℜq < n − 1 via an
analytic continuation argument (see [12, pp. 60–61] and [16, Theorem 3.1] for details). In particular, for q = 1 we obtain the
following formula:

G(1)
K ,ξ (0) = −

i
2π(n − 1)


∥x∥−n+1

K |x| − ∥ − x∥−n+1
K |x|

∧
(ξ).

Finally, we use the condition G
′

K ,ξ (0) = 0 for all ξ ∈ Sn−1 to get
∥x∥−n+1

K |x| − ∥ − x∥−n+1
K |x|

∧
(ξ) = 0, ∀ξ ∈ Sn−1.

Due to homogeneity, the latter formula holds for all ξ ∈ Rn
\ {0}.

Inverting the Fourier transform we get

∥x∥−n+1
K |x| − ∥ − x∥−n+1

K |x| = 0, x ∈ Rn
\ {0},

which means that

∥x∥K = ∥ − x∥K , x ∈ Rn,

i.e. the body K is origin-symmetric. �

Proof of Theorem 1.2. As above, our goal is to derive a formula for fractional derivatives of the function AK ,ξ (t) at t = 0 and
then use the condition A′

K ,ξ (0) = 0. The following calculations are known in the class of origin-symmetric convex bodies;
see [15] or [12]. We will extend these results to cover the general case.

Let −1 < ℜq < 0. Using the definition of fractional derivatives, the Fubini theorem, and integration in polar coordinates
we get

A(q)
K ,ξ (0) =

1
Γ (−q)


∞

0
z−1−qAK ,ξ (z)dz

=
1

2Γ (−q)


R


|z|−1−q

+ |z|−1−qsgn z

AK ,ξ (z)dz

=
1

2Γ (−q)


R


|z|−1−q

+ |z|−1−qsgn z
 

(x,ξ)=z
χ(∥x∥K ) dx dz

=
1

2Γ (−q)


K


|x · ξ |

−1−q
+ |x · ξ |

−1−qsgn (x · ξ)

dx

=
1

2Γ (−q)


Sn−1


|x · ξ |

−1−q
+ |x · ξ |

−1−qsgn (x · ξ)
  ρK (θ)

0
rn−1r−1−qdr dθ

=
1

2(n − 1 − q)Γ (−q)


Sn−1


|x · ξ |

−1−q
+ |x · ξ |

−1−qsgn (x · ξ)

ρ
n−1−q
K (θ) dθ
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=
1

4(n − 1 − q)Γ (−q)


Sn−1

|x · ξ |
−1−q


ρ
n−1−q
K (θ) + ρ

n−1−q
K (−θ)


dθ

+
1

4(n − 1 − q)Γ (−q)


Sn−1

|x · ξ |
−1−qsgn (x · ξ)


ρ
n−1−q
K (θ) − ρ

n−1−q
K (−θ)


dθ.

The latter equality allows us to consider A(q)
K ,ξ (0) as a function of ξ ∈ Rn, and write it in terms of Fourier transforms using

formula (1) (cf. (4)),

A(q)
K ,ξ (0) =

cos(qπ/2)
2π(n − 1 − q)


∥x∥−n+1+q

K + ∥ − x∥−n+1+q
K

∧

(ξ)

−
i sin(qπ/2)

2π(n − 1 − q)


∥x∥−n+1+q

K − ∥ − x∥−n+1+q
K

∧

(ξ).

By the analytic extension argument mentioned above, the formula can be extended to −1 < ℜq < n − 1. Putting q = 1
in the latter formula and using the condition A′

K ,ξ (0) = 0, ∀ξ ∈ Sn−1, we get
∥ − x∥−n+2

K − ∥x∥−n+2
K

∧

(ξ) = 0, ∀ξ ∈ Sn−1.

Therefore, ∥ − x∥−n+2
K − ∥x∥−n+2

K = 0, for x ∈ Rn
\ {0}, i.e. the body K is origin-symmetric. �
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