SINGULAR INTEGRAL OPERATORS
GENERATED BY WAVELET TRANSFORMS

DMITRI RYABOGIN AND Boris RUBIN!

Let g € LY(R™), gi(z) = t7"g(z/t). If [g = 0, then g is called the
wavelet function, and the convolution operator f — f x g; is called
the wavelet transform of f generated by the wavelet g. For a large
class of functions g and f € LP(R™), 1 < p < oo, it is shown that
fep(f*gt)(x)dt/t converges as € — 0 and p — oo in the LP-norm and in
the a.e. sense to alimit I(f,g) = cf+T f, where ¢ = ¢(g) = const, and
T = T(g) is the Calderén-Zygmund singular integral operator. The
particular case T' = 0 corresponds to Calderdn’s reproducing formula.
Each “rough” singular integral operator Ty f = p.v. |z|~"0(z/|z]|) * f,
with § € H'(X,_1) (the Hardy space on the unit sphere) can be
represented as I(f, g) with a suitable wavelet g. A new proof of the
LP-boundedness of Ty, 0 € H'(X,_1), is given.

1 INTRODUCTION.

The present article is motivated by the following problems, which are closely

related to each other.

1. If fe LP(R™), 1 < p < o0, and ¢ is an integrable radial function, then ([12],

p

(L?) 1
lim / S * gt dt = ¢, f, cqg = / 9(z) log —dz,
59 t Re |z|
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provided
/ g(x)de =0 and /R ‘g(x) log |a:||da: < 0. (1.2)

The first equality in (1.1) is a variation of the Calderén reproducing formula ([5], p. 8).
What can one say about the limit in (1.1) if g is not radial? For which nonradial functions
g does the reproducing formula (1.1) still hold?

2. If g belongs to the Schwartz space S(R"™) and [ g = 0, then ([15], p. 45)
[? g+dt/t tends (as € — 0 and p — c0) to the distribution of the form ¢d + p.v.K, where
¢ = ¢(g9) = const, § is the Dirac delta function, and K is a certain Calderén-Zygmund
kernel, having the form Q(y/|y|)/|y|™ with the characteristic € depending on g. The
expected LP-analogue of this statement reads :

p
(L)
lim /f*gt dt=cf +Tf, felP, (1.3)
e—0 t

p—oo

T = T(g) being a singular integral operator defined by T'f = p.v. K * f . The problem is
to prove (1.3) and to find a possibly large class of integrable functions g for which (1.3)
holds.

In the case n = 1 these problems were studied in ([11]; Sec. 12). One should
mention the earlier papers by M. J. Fisher [6, 7], in which the LP-convergence of integrals
similar to that in (1.1) was studied in the more general setting for functions f defined
on a Hilbert space H. The results from [6, 7], reformulated for the special case H =
R™, are less general than those presented below. For example, we interpret the limit
of [P(f * g¢)dt/t not only in the LP-norm but also in the “almost everywhere” sense.
Furthermore, the integral c, (see (1.1)) in our consideration can be regarded in the sense
of duality between BMO(R™) (we recall that log(1/|z|) € BMO(R™)) and the Hardy space
H'(R™). The “standard” case, when cg 1s represented as an absolutely convergent integral,
is also considered. Our proofs seem to be simpler than those in [6, 7], and employ different
ideas.

In order to state main results we denote: ¥, = {z € R™ : |z| = 1}. The
Hilbert transform H, f of f in the direction 3’ = y/|y| € ¥,,_1, and the Riesz transforms
R;f are defined by

(Hy f)(z) = i,p.v./ Mdt, (1.4)

(R;f)(z) = EEZ:;W J oy ‘nﬂ fydy, j=1,...,n. (1.5)

The notation H(R™) and H'(%,_1) is used for the coresponding Hardy spaces [3, 4, 10].
The letter c de31gnates a constant which can be different at each occurence. We will use
the notation I. ,(f,g) fp (f*xg)(z)dt/t, 0 <e < p<oo.
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Theorem 1.1. Let f € LP(R"), 1 < p < 0o, g € HY(R™). Then

| sup I o (f;9)| llp < cliglla [1f[lp, (1.6)
0<e<p<oo

and the limit liII(l) I. ,(f,g) exists in the LP-norm and in the a.e. sense.
E—>

pP—>00
In order to state our next results, we need the Calderén-Zygmund singular in-

tegral operators defined by

€ 0 yl
Tof)s) = i T2NE), (T H@ = [ f(x—y)ﬁdy- (1.7
e 6<|y|<p

Theorem 1.2. Suppose that § € H' (X fz dr’ =0, f € LP(R™),

1 <p<oo. Then | sup [T,7°f|ll, <c ||9||H1(2n_1)||f||p, and the limit Tyf =
0<e<p<oo

hr% T,Pf exists in the LP-norm and in the a.e. sense.
E—>
p—00

This theorem was first proved by Calderén and Zygmund [1] for 6 belonging to
Llog™ L(¥,_1) . The more general case § € H*(X,_1), was studied in [2, 3, 8-10, 17].
In Section 4 we give an alternative proof of Theorem 1.2 based on Theorem 1.1.

Theorem 1.3. Assume that g(x) is a measurable function satisfying (1.2) and

such that Q(2') = [°r" tg(ra’)dr € HY(S,—1). For f € LP(R"), 1 < p < oo, the
following statements hold:
' (L) 1
(4) I(f,9) = lim I, ,(f,9) =cof +Taf, cq4 :/ g(z) log —dz, (1.8)
e0 Re ||
p—>00
(LP)
where Tof = lim ToPf (cf (1.7)).
e—0
p—00
(it) If, moreover,
lg(2)| | log |z| |*Tdz < 0o for some § > 0, (1.9)
|z|<1/2
then || sup [Le,(f,9)| llp < c||fllp, ¢ = c(g), and (i) holds with convergence inter-

0<e<p<oo
preted in the a.e. sense.
This theorem can be extended to g € H(R™) as follows.
Theorem 1.4. Let g € H'(R") and Q') = [ r"'g(ra’)dr. Then (1.8)
holds in the LP-norm and in the a.e. sense with

jr(nt+1)/2

ngan_lr«nﬂ)/z);J (Bi) W)y, o =[Bnal (110)

Theorems 1.3 and 1.4 are multidimensional generalizations of the similar result

for n = 1 from [11, Sec. 12]. They give a partial answer to problems 1 and 2 mentioned
above, and link together Calderdn’s reproducing formula with singular integrals.
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Example 1.5. Let g(z) = ¥ (|z|)#(«’) be such that
0€ LY (X, 1), /r”_lv,b(r)dr =0, /r”_1|1,b(r) logr|dr < oco. (1.11)
0 0

Then the conditions (1.2) are satisfied and Q(a') = [;"r"'g(ra’)da’ = 0. By Theorem
1.3, for f € LP(R™), 1 < p < oo, we have

lim /f It gt = cqf, cg=/r"_1¢(r)log%dr / 0(z")dz'
0

e—0
p—>00 En 1

€

in the LP-norm and in the a.e. sense ( the latter holds if [; 1/2

for some § > 0).

e (r)|| logr|tHodr < oo

This example generalizes the corresponding results (for radial wavelets) from
[12, 13] and shows that the reproducing formula (1.1) also holds for nonradial degenerate
wavelet functions g(x) = ¥(|z])0(x"), satisfying (1.11) (more generally, one can take any
function g satisfying Theorem 1.3 or Theorem 1.4 with Q = 0).

Example 1.6. Consdier the Calderén-Zygmund singular integral operator (1.7)
with § € HY( fz dx’ = 0. Let 9(r) be a positive integrable decreasing
function on (0 oo) such that fo (r)dr = 1. Then g(z) = |z|*™(|z])0(z") € H*(R")
(see Lemma 2.6 below), and Theorem 1.4 yields ¢, = 0, Q(z') = 6(2'),

Tef = hm/
p—00

in the LP-norm and a.e. Thus, each Calderdn-Zygmund operator Ty can be represented in
“wavelet form” (1.12).
The paper is organized as follows. Section 2 contains auxiliary results, mainly

I * g

dt, feLP(R"), 1<p< oo, (1.12)

related to the Hardy spaces H'. In Section 3 we prove Theorem 1.1. A new proof of
Theorem 1.2 and a proof of Theorems 1.3 and 1.4 are given in Section 4.

Regarding some perspectives, it is our hope that close results can be obtained in
different settings for bilinear operators I(f,g)(z) = [(Wyf)(z,t)dv(t) generated by suit-
able continuous wavelet transforms (W, f)(z,t), which are integrated with respect to the
relevant measure dv(t). The case, when g is replaced by a wavelet measure or distribution,
also seems to be interesting. One may expect that a suitable choice of g in I(f,g) will
lead to certain new singular integrals corresponding to the initial setting.

Acknowledgments. We are very grateful to Prof. L. Grafakos and Dr. A.
Stefanov for sharing with us their knowledge of the subject. The second author expresses
his gratitude to Prof. E.M. Stein and Prof. R.S. Strichartz for useful discussions and the
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hospitality during his visit in summer 1997. Special thanks go to the referee for valuable

remarks.

2 AUXILIARY RESULTS.

Recall some basic facts related to the Hardy spaces H*(R™) and H'(X,_1) (for
more details see [15], p. 106; [3], p. 591; [4], p. 233).

Definition 2.1. A function a(z) on R™ supported by a ball B C R™ is called
an atom on R™ if

F[a(x)da:zo and la(z)| < |BIL. (2.1)

't

Definition 2.2. A regular atom on Y,_1 is a function «(z') on X,_;
supported by a spherical cap B C ¥,_1 and satisfying the relations

/ a(z)dz' =0, |a(z")| < B[N (2.2)

An exceptional atom on Y, 1 is the constant function a(z'), having the value |$,_1|71.

Theorem 2.3. An integrable on R™ function g belongs to H'(R™) if and only
if
o0
9= Ana (2.3)
k=1

where ay, is an atom on R™ and X2, |A\g| < oo. If g € HY(R"), then ||g|lm ~
inf Y rey | Ak| where the infimum is taken over all decompositions (2.3).

A similar statement holds for functions on X, _; provided that atoms in the
equality of the (2.3)-type are regular or exceptional (see [3], pp. 591, 592).

We prove now some auxiliary lemmas which are of independent interest.

Lemma 2.4. If g € H'(R"™), then Q(z') = [, t" " 'g(tz)dt € H'(E,_1), and

120 (2,-0) < cllgllar @y (2.4)

Proof. Let g be an atom, supported by a ball B of radius 6, r = dist(0, B).
It is clear that fEn_l Q(2')dx = [R. g(x)dz = 0. Let us show that there is a geodesic ball
B C ¥,,—1 such that

A
suppd C B and ‘Q‘SE’ A= A(n).



Put r = k6 for some k > 0. Then

r+26
:L'I)| = ‘ / tn_lg(tafl)dt S Cp (7" + 221 —r = CnPn—l(k)a (25)

where P,_1(k) = cp((k+2)" — k™) if k > 0 and P, _1(k) = ¢, if k = 0. Let ko be a real
number such that P,_1(k)/(k+1)""! < A(n) for k > ky. Consider two cases: 1) k > ko,
and 2) k < ko. In the first case, we choose B to be the projection of B on ¥,_;. If p is
the radius of B, then |B| ~ (sinp)®~ = (§/(r +6))" " = (k+ 1)'~". Hence by (2.5),

961 < (i T <

Let k < ko. Then (2.5) shows that one can take B = X,,_; with |Q(z')]
A/|B|, A=cyP,_1(ko). If g = Z;’il Aja; is an atomic decomposition of g, then Q(g)
D o1 A Qay) = AT, 2;jQ(a;), where Q(a;) = Q(a;)/A are regular atoms on %, i,

and we are done.

<

-

The next statement can be regarded as an inverse of the previous one in a certain
sense.

Lemma 2.5. If 0(z') € H'(Z fz: dz' =0, and ¢(r) is an inte-
grable positive decreasing function on R, then

ote) Do) 207

H'R")  and ||gllz®ey < cllfllms,-.)- (2.6)

Remark. This statement was inspired by the argument from [15], p. 178,
where 0(z') was a bounded function.

Proof. Let first 6(z') be a regular atom, supported by the geodesic ball B
with the center at o € %,,_; of radius p. We claim that G(z) = 0(z")¢(|z|)|z|'™™ admits
a decomposition G = Y 7> ¢.Gy, where G, are atoms in H'(R™) and Y 7o x| <
¢ < oo with ¢ independent of . Given a number a € (1,2], which will be specified later,
we set

ST e Y 1) ()
(a—1)p(a®) |zt

and G (z) = 0 elsewhere. Then G =Y 2 ¢;Gy, where ¢ = a*~1(a — 1)¢p(a*), and

ak < |.Z" < ak—i-l’

oo

Z ck = Z o(a®)a* e -1) < Z / o(r)dr = /go(r)dr < 00. (2.7)

k=—oc0 k=—o0 k=—co k-1 0



Let us show that Gy is an atom for a suitable a = a(p). Consider two cases: 1) p > pg =
7/100, and 2) p < po. In the first case we put a = 2 and obtain

2~k < ©
(28)"=HB| ~ [B|’
Since supp G C B and ka = 0, then ¢ 'Gy is an atom. If p < py we proceed as
follows. Put a = cos p/(1 — 2tan p). Then there is a cube Qy around Dy, = {z:a* < |z| <

af*t1, z/|z| € B} with the axis of symmetry along the vector o, centered at the point

k+1

G| < c=c(n,py), Bp={z:|z| <28}

qr, = 27 (a**1 4 aF cos p)o, and having two parallel faces on the hyperplanes (z,0) = a

k¥ cos p. A simple calculation shows that the side of Qj, equals a*(a — cos p).

and (z,0) =a
Let By = {x: |z — qx| < 7%}, & = 2-/2a"(a — cos p), be the smallest ball containing Q.
Then supp G C By and

al=k Cn (a — cos p)™
< L
@—DaeE =B wP Y0 =TTy

Since for small p, |B| ~ (sinp)"™!, a — cosp ~ sinp and a — 1 ~ sinp, then

|G| <

sup w(p) < c(n,pp) and Gy is an atom (up to a constant multiple independent of k
0<p<po

and p).

In the general case we have 0(z') = >°77, Ajoy;(2') (see Definition 2.2), where
(') is a regular atom such that supp a; C By, |oj| < |Bj|~t, B; being a geodesic ball
of radius p;. We set

o o0

g9(z) = Z Aj Z Ck7ij7j(:U)—|— Z Aj Z Ck,ij’j(CU), po = 7/100,

Pj=Po k=—o0 P;<po k=—o0

with ¢ ; and Gy, j(x) constructed above according to the size of p;. Due to (2.7),
DY crilhl < €Yl < cllbllas, ),
Jj Kk J

and the proof is complete. A
Lemma 2.6. Let g be an integrable function, such that (a) g satisfies (1.2)
or (b) g € HY(R™). Then (Kg)(z) = |z|™ f|y|<|$|g(y)dy € LY(R™) and the constant

Cq d:effRn (Kg)(z)dz can be evaluated as follows:

¢ :F[g(aj) log — dz (2.8)

]

in the case (a) and

i (n+1)/2 n

_ : Yi
Cg = Jn—1F((n+ 1)/2) ;J(RJQ)(y)‘mdy (29)

in the case (b).
The proof of this lemma can be found in [12, Theorem 3|.
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Lemma 2.7. Given a function g € L*(R"), let

||
\a:|_"/ " ro(ra)dr i |z| <1,
kO (z) = ° (2.10)
—\a:|_"/ r"tg(ra’)dr if |z| > 1.
|

x|

If g satisfies (1.2), then k° € L*(R™) and

F[ko(av)dars :E[g(:c) log%da:. (2.11)

Moreover, if g satisfies (1.9) and

lollsses = [ 9@ l1oglsl #ds + [ lg(a)|log ol do+ gl (212)

|z|<1/2 |z|>1

then for any f € LP(R™), 1 < p < oo,

| sup [k flllp < cllgllsiogllfllp,  k(z) = 7"k (2 /e). (2.13)

Proof. We have

1 T
1
/ K% (z)|dz < / dw'/%/tn_”g(m')\dt: / |g(x)\logmdm,
I NI 0 0

|z|<1 |z|<1

and - -
/ k() |de < / i’ / u / (1 g(t') | dt = / 9(2)] log |z|de.
|z]>1 Saq 17 |z]>1

The proof of (2.11) is similar. Furthermore, since

( 1/2

|10g|:v\|_1_5/ " g(rz')||logr|* Todr if |z <1/2,
0
1 1
K@) < / 1 g (ra!)|dr i 1/2 < |2 <1,

0

\/|| " Yg(rz")|dr if |z > 1,

and [R, |k°(z)|dz < ||g]|s10g, then (2.13) holds by Proposition 1 from [15], p. 71. A
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3 PROOF OF THEOREM 1.1.

We keep on the notation (1 4), (1.5), and remind that g € L*(R"™), f € LP(R"),
1<p<oo, I ,(f, 9)(z fp (f xg¢)(x)dt/t, 0 <e < p < oo. The required result will be
derived from the followmg two lemmas.

Lemma 3.1. If g is odd, then

| sup 1Ly 0)llp < e llallal 1 (3.)
0<e<p<oo
and i
lim L ,(f.0)(@) = F/ (y) (Hy () dy (32)
p—00 n

i the LP-norm and almost everywhere.

Proof. By changing the order of integration and taking into account that g is

I o (f,9)(z) = %F[g(y)dy / Mdt.

ely|<|t|<ply|

odd, we have

It remains to apply an argument which is similar to that in [16], Ch. VI, Sec. 2. A

Lemma 3.2. Ifg € HY(R™) is even, then (3.1) holds with ||g||1 replaced by
9/l and

lim I, (f,9)(e) = “Z R;g9)(y)(Hy Ry f) (a)dy (3:3)

p—00

in the LP-norm and almost everywhere.

Proof. Following the Calderén-Zygmund idea, we pass from the “even case” to
the “odd one” by employing the Riesz transforms R;. Since ||R; f||, < c||fllp, | Rjgllm <
cllgllg:, and Rjg is odd, then (3.1) (with ||g||g:) and (3.3) are consequences of the
equality I ,(f,g9) = 2?21 I. ,(R;f,Rjg) (use Lemma 3.1). The latter can be easily
checked for Schwartz functions f and g orthogonal to all polynomials, by applying the
Fourier transform to both sides and using the equalities

. n_ g2
BoMO = FO 2, j=1ym, 3 L1
€] = I¢l

We recall that the space ®(R™) of all such functions is dense in LP(R™) and in H'(R")
([15], p. 128). A

In order to prove Theorem 1.1 we write g in the form g =gy + 9, g+(z) =
(9(z) + g(—x)) /2. The result then follows by Lemmas 3.1 and 3.2.
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4 PROOF OF THEOREMS 1.2, 1.3 AND 1.4.

The following lemma will be used repeatedly as a bridge between Theorems
1.1 - 1.3. We assume that f € LP(R™), 1 < p < oo, g € L}(R") satisfies (1.2), and keep
on the notation I.,(f,g) and Ty *f from Theorem 1.3.

Lemma 4.1. (i) For ¢ — 0 and p — oo, the integrals I. ,(f,g) and Tg'*f
(L)
converge in the LP-norm simultaneously. If the limit Tof = lin(l) T f exists, then
E—>

pP—00

(L) 1
Iy (1.0) = of +To. ¢y = . o(e)tog e (4.1)

(i1) Under the additional assumption (1.9) the following assertions hold :

(a) | sup [T flllp < 1 (llgllsiog + llgllz) Il (4.2)
0<e<p<oo
if and only if
I sup (Lo (f 9)lllp < c2 (llgllsiog + gl )£l (4.3)

O<e<p<o

5,log 18 defined by (2.12).
(b) The statements in (i) are valid with the LP-convergence replaced by that in

where ¢y, co are some constants independent of f and g, and ||g|

the a.e. sense.
Proof. (i) A simple calculation yields

|z|/e
I. ,(f,9) = f *kep, where ke,(z)=|z|™" / r"g(ra’)dr (€ L'(R™)). (4.4)
lzl/p
Let k(z) = |z|™" lel r"~tg(ra’)dr. One can write k(z) = k°(x) + ¢°(z), where k°(z) is
the function (2.10), ¢°(z) = 0 for |z| < 1 and ¢°(z) = |z|™"Q(z’) for |z| > 1. Then (4.4)
reads:

Lo(f,9)=k2xf—kO* f+Tq " f (4.5)
(the subscripts indicate the relevant dilations, e.g., k(z) = e "k%(x/¢)), and the results
follow by Lemma, 2.7. A

Proof of Theorem 1.2. Let us prove the maximal estimate

I sup (TP fllp < cllbllar .-l llp- (4.6)

0<e<p<oo
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We set g(z) = e~ 1#l|z|'="0(2'). By Lemma 2.5, g € H*(R") and ||g||zr1(Rey < |0l 211 (s, 1)-
Further, Theorem 1.1 yields || sup |I,,(f,9)|llp < cllgllar R flp- By taking all of

0<e<p<oo
these into account, we make use of Lemma 4.1 (ii a). In our case Q(z') = 0(z’), and

1/2 00
lollssos =01 ([ ogr™ear+ [~ Jtogrledr +1) < e 0l s,
0 1

Hence (4.6) follows. The estimate (4.6) enables us to obtain an a.e. convergence of T,””f
by taking into account that for compactly supported smooth f,

aonE= | (f(x—y)—f(a:))ﬁ(ﬁ’" / f(a:—y>9|§|’;)dy

e<|y|<1 1<|yl<p

converges pointwise as ¢ — 0 and p — co. The LP-convergence of T,*f, f € LP(R™),
then follows by the Lebesgue dominated convergence theorem. A

Remark 4.2. Variants of Theorem 1.2 are formulated sometimes in terms
of the truncated integral (7} f)(z fl se (z — y)0(y')dy/|y|™ (without truncation at
infinity). For f € LP(R™), 1 <p < oo, and each 6§ € L'(X,_1) such an integral is
well-defined a.e. for € > 0 [1, p. 292]. Since

||Sl;13|Te€fH|p = ||s313\plggon’pf|||p <|l sup [T flllp,
€ €

<e<p<oo
then Theorem 1.2 can be reformulated in terms of T f.

Proof of Theorem 1.3. By Theorem 1.2, T f = 111% To'*f exists in the LP-
E—>
pP—>00

norm and a.e., and || sup |[Tq*f[llp < c||Qm1 (s, 1)l fllp- Hence the first statement
0<e<p<Loo

of the theorem holds by Lemma 4.1 (i). According to (4.5),

sup L ,(f,g)| <2 sup |k« f|+ sup |TSPf],
0<e<p<oo e>0 0<e<p<oo

and the second statement follows by Lemma 2.7. A

Proof of Theorem 1.4. We first prove the part of the theorem, related to
the LP-convergence. Let g € ®(R™) (the space of Schwartz functions orthogonal to all
polynomials). We recall that ®(R™) is dense in LP(R™) and in H(R™) ([15], p. 128). Then
(1.8) gives

I(f,9) =cof +Taf, [e€LPR"), ge@R"), (4.7)

where, by Lemma 2.6,

im(n+1)/2
¢y = /Rnufm(x)dx— (i Z J (R;9)(y
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Fix f € LP(R™) and consider the mappings g — I(f,9), g = ¢4f, 9 = Taf as operators
from H'(R™) to LP(R™) (the first and the third operators are defined as LP-limits on
g € ®[R") for fixed f € LP(R")). By Theorem 1.1, |[I(f,9)|l, < ||9/|a2(Re)||f]lp- Note
also that ||cgf|lp < ||g]lm Re||f||p (due to the boundedness of R; : H'(R™) — L'(R™)).
Furthermore, by Theorem 1.2 and Lemma 2.4,

Tafllp < el @, fllp < cllglla @ [1f]lp-

Owing to these relations, one can extend (4.7) to all g € HY(R™). It remains to show that
our extensions, say, I(f,g) and Tqf, coincide with

(L?) )
I(f,g9)= lim I ,(f,g) and Tof = lim Ty*f

e—0 e—0

p—00 p—>00

respectively for an arbitrary g € H'(R™). Given g € H'(R"), let {gx}3>, C ®(R™) be a
sequence such that ||g — gg||g1(Rr) — 0 as k — co. Then

4
II(f,9) = I(f,9)llp <D A; where Ay =|[I(f,g) = I(f,gx)llp,
7j=1

AQ = ||I<fagk) - Ie,p(f7 gk)”p7 A3 = ||I€,P(fa gk — g)Hp’
A4 - Hjs,p(fag) - I(fag)Hp'

For sufficiently large k£, A; becomes arbitrary small by definition of I (f,9). The same
holds for Az due to (1.6). The quantities Ay and Ay tend to 0 as € — 0 and p — oo.
Hence I(f,g) = I(f,g). Similarly, Tof = Tof. Thus, we have (4.7) with I(f,g) and Tqf
defined as the LP-limits. The existence of these limits in the a.e. sense follows by Theorems
1.1 and 1.2. A
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