FOURIER ANALYTIC METHODS IN THE STUDY OF
PROJECTIONS AND SECTIONS OF CONVEX BODIES

A. KOLDOBSKY, D. RYABOGIN, AND A. ZVAVITCH

It has been noticed long ago that many results on sections and pro-
jections are dual to each other, though methods used in the proofs are
quite different and don’t use the duality of underlying structures di-
rectly. In the paper [KRZ], the authors attempted to start a unified
approach connecting sections and projections, which may eventually
explain these mysterious connections. The idea is to use the recently
developed Fourier analytic approach to sections of convex bodies (a
short description of this approach can be found in [K7]) as a prototype
of a new approach to projections. The first results seem to be quite
promising. The crucial role in the Fourier approach to sections belongs
to certain formulas connecting the volume of sections with the Fourier
transform of powers of the Minkowski functional. An analog of these
formula for the case of projections was found in [KRZ] and connects
the volume of projections to the Fourier transform of the curvature
function. This formula was applied in [KRZ] to give a new proof of
the result of Barthe and Naor on the extremal projections of /,-balls
with p > 2, which is similar to the proof of the result on the extremal
sections of [,-balls with 0 < p < 2 in [K5]. Another application is to
the Shephard problem, asking whether bodies with smaller hyperplane
projections necessarily have smaller volume. The problem was solved
independently by Petty and Schneider, and the answer is affirmative
in the dimension two and negative in the dimensions three and higher.
The paper [KRZ] gives a new Fourier analytic solution to this problem
that essentially follows the Fourier analytic solution to the Busemann-
Petty problem (the projection counterpart of Shephard’s problem) from
[K3]. The transition in the Busemann-Petty problem occurs between
the dimensions four and five. In Section 4, we show that the transition
in both problems has the same explanation based on similar Fourier
analytic characterizations of intersection and projection bodies.

The goal of this survey is to bring together certain aspects of the
Fourier approaches to sections and projections, in order to emphasize

the similarities between the results and the proofs. We do not include
1
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the proofs and refer the reader to [K7] and [KRZ] for complete proofs,
other related results and references.

1. VOLUME AND THE FOURIER TRANSFORM

We start with necessary notations and definitions. The Minkowski
functional of a convex body K is defined by

l|z||x = min{a >0: z € a K}.
Observe that K = {z : ||z||x < 1}. If x is the indicator function of
the interval [—1,1], and £ € S™' then
Vol (K N £4) = / N

rER™: x-£=0

] 1)

Passing to polar coordinates in the hyperplane z - £ = 0, we get the
polar formula for the volume of sections:
1

Vol,_((KN¢H) = —— |10]17"+" do. (1)
n—1 sn—lngl

It is important to note that the right-hand side of the above formula
is the spherical Radon transform of || - ||z"*".

The surface area measure S,_1(K,-) of a convex body K in R" is
defined as follows: for every Borel set £ C S™~', S,_i(K, F) is equal
to Lebesgue measure of the part of the boundary 0K where normal
vectors belong to F (see, for example [Ga3], page 351). The well-known
Cauchy formula ([Ga3], page 361) expresses the volume of projections
of the body K as the cosine transform of the surface area measure:

1
Vol,_ (K eL) =3 / 0 v|dS,_ (K,v), 6eS™'. (2
Sn—l

For our needs, it is enough to consider bodies with absolutely con-
tinuous surface area measures. A convex body K is said to have the
curvature function

f(): S"' = R,
if its surface area measure S,_1(K,-) is absolutely continuous with
respect to Lebesgue measure o,_; on S™7!, and

dSn_1 ([X‘r, )
T = fi(5) € Ly(S™T.
=) ) € s
We also recall that fx(-) is the reciprocal Gauss curvature, viewed as
a function of the unit normal vector (see [Sc2], page 419). In the next
section, we apply this property to compute the volume of projections

of [,-balls.
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By expressing the volume of sections and projections in terms of the
spherical Radon and cosine transform one can reduce geometric prob-
lems to the study of these transforms. The Fourier analytic approach
to sections and projections is based on relating these transforms to the
Fourier transform first, and then applying methods of harmonic anal-
ysis to solve geometric problem. In many cases we operate with the
Fourier transform of distributions. We denote by S the space of rapidly
decreasing infinitely differentiable functions (test functions) on R™ with
values in C. By &' we denote the space of distributions over §. Every
locally integrable real valued function f on R™ with power growth at
infinity represents a distribution acting by integration: for every ¢ € S,

(f,¢) = fR" f(z)¢(x)dz. The Fourier transform of a distribution f is
defined by <f, q;> = (2m)"(f, ¢), for every test function ¢.

The following formula expressing the volume of hyperplane sections
in terms of the Fourier transform was proved in [K5] by using a con-
nection between the Radon and Fourier transforms of homogeneous
distributions:

Let K be an origin symmetric star body in R™ and let £ € S™71.
Then

Vol,oo (K 164) =~ (el (6). 3)

An analog of this formula for the volume of projections was proved
in [KRZ] by relating the cosine and Fourier transforms of homogeneous
distributions:

Let K be a convex origin symmelric body in R™ with an absolutely
continuous surface area measure. Then

Vol (Ko*) = _%E(a), Vo € S5, (4)

Here fx(z) = |z|7"" fr(x/|z]), € R™\{0} is the extension of fx(z),
z € S"! to a homogeneous function of degree —n — 1. In the case of
general convex bodies one has to use the so-called extended surface
area measure S.(K') in place of the curvature function. An interested
reader may find a brief description of this and other related concepts
in the Appendix at the end of the paper.

2. EXTREMAL SECTIONS AND PROJECTIONS OF B;L.

It has been known for a while that Fourier analytic formulas for the
volume of sections are useful in the study of extremal sections of certain
bodies. The first formula of this kind, relating the volume of sections
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of the unit cube B = [—1,1]" to the Fourier transform, was known to

Polya [Po]:
o 00 1y l [T Sin(T‘fk) r
Vol(B" NET) = TI'_/ klzll e dr. (5)

This formula has many applications, the most remarkable of them be-
ing the result of Ball [Bal] that the maximal volume of hyperplane
sections of the cube (in every dimension) is V2 and is attained at
= (%, %, 0...,0). It is worth mentioning that finding the smallest
hyperplane section of the cube is much easier and does not involve the
Fourier transform (the minimal section is the one parallel to the face,
as was first proved by Hadwiger [Hal).

An analog of formula (5) for [,-balls

Bl ={zeR": ) |zfr <1}
=1

was established by Meyer and Pajor [MP] for 1 < p < 2 using proba-
bilistic methods: for every ¢ € S™~!

VOln—l(B;L N EJ_) = 7r(n - ]>Ff(77 . ]>/P> /OOO kl:[]ﬁ)/p(t&» dt’

(6)
where 7, is the Fourier transform of the function exp(—|-|?) on R.. It
was shown in [K5] that the latter formula works for all p € (0, 00) and
is a direct consequence of formula (3).

In particular, this formula allows to find the extremal sections of B
when 0 < p < 2 (the upper bound for every p € [1,2] and the lower
bound for p = 1 where found by Meyer and Pajor [MP], the lower
bound for other values of p was proved in [K5]): for every § € S™~1,

Vol,_y (B2 N65) < Vol,_y (B N8*) < Vol (B 6t),

where 6; = (1,0,...,0) and 0, = (1/y/n,...,1/y/n). To deduce this
result from (6), one only has to show that, for 0 < p < 2, the function
Yp(v/) s log-convex on [0, 00), which was done in [K5]. In fact, log-
convexity means that, for every £ > 0 and 0 < & < < mp < & with
&+ & =ni +nj =1, one has

Yo (t& )1 (t€2) = (b )vp(tn2),

which immediately implies the result.
Now we pass the projection counterpart of the result for sections of
[,-balls. The case of hyperplane projections of the cube is quite simple.
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Using the Cauchy formula (all the facets of the unit cube have the same
volume, and their normal vectors are parallel to the axes), we get

Vol,_, (Bjjo aL) — Vol,_,(B"™") (Xn: |92~|> .
i=1
Then
Vol (Bg; (1,0,...,0%) < Vol (Bgo aL) < Vol (Bgo (% ,%)L> ,
or

Volo_1(B™1) < Vol,_y (Bg; eL) < VnVol,_1 (B,

The same idea can be applied to the case of projections of B". Consider
vectors ¢ = (€1 -+ - &,), where ¢; can be chosen as +1 or —1. Then ﬁe

are normal vectors to the facets of By. Let C,, be the volume of a facet
of BT, then again the Cauchy formula implies

9L) - \/%cn (Z|9'€|) .

15

Vol,_y (Bf

Finding the maximal and minimal values of Y |0 - €| is related to

sharp constants in the Khinchine inequality for independent symmet-
ric Bernoulli random variables. These constants were found by Szarek

[Sz]:

Vol (B{L (

< Vol (B{L

\/%,\/%,o,...,oﬁ) eL) <

Vol (Bf (1,0,...,0)L) .

Comparing the results on extremal sections and projections of B} and
its polar B . we see that the answers for projections are "dual” to the
answer for sections.

Recently, Barthe and Naor [BN] have found extremal hyperplane
projections of [,-balls, p > 2. The result is "dual” to that for sections:

for every € S~ 1,
Vol (B;|6t) < Vol (B; o).
where 6, = (1,0,...,0) and 0, = (1/y/n,...,1/y/n). The proof in [BN]

is based on a formula similar to (6): for every £ € ™!,

eL) < Vol,_, (Bg

n

ol — l_[1 a7 B (1)

1y 2ir(d/p) b=
¢ ) - mp" ' (n — np_*l) 0/ 12 d, (7)

Vol (B;
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where 1/p+1/p* = 1 and S« (u) is the Fourier transform of the function

|x|p*_26_|x|p* on R. The proof of this formula in [BN] uses probabilistic
arguments. The rest of the proof in [BN] is similar to that for sections:
for p > 2, the function B,«(1/-) is log-convex on [0, o0), which together
with (7) immediately implies the result. It was shown in [KRZ] that
formula (7) follows directly from (4) which makes the proof for projec-
tions completely similar ("dual”) to that for sections.

In fact, fx is the reciprocal Gauss curvature of K, viewed as a func-
tion of the unit normal vector. Thus, computing the Gauss curvature

of B} one gets (see [KRZ]) :

[ep(0) = (p* =1)" <HI9 i ”) 6=, pe st

and so (7) can be proved by computing the Fourier transform of IBn.

3. THE BUSEMANN-PETTY AND SHEPHARD PROBLEMS.
The Shephard problem (see [Sh]) reads as follows. Let K, L be

convex symmetric bodies in R™ and suppose that, for every § € S™~!,
Vol,_y (K eL) < Vol,_, (L eL) . (8)

Does it follow that Vol,(K) < Vol,(L)? The problem was solved in-
dependently by Petty [P] and Schneider [Scl], who showed that the
answer is affirmative if n < 2 and negative if n > 3. Ball [Ba2], proved
that it is necessary to multiply Vol,(L) by y/n to make the answer
affirmative in all dimensions. A version of the Shephard problem with
lower dimensional projections was solved by Goodey and Zhang [GZ].

One of the main steps in the solution of the Shephard problem is a

connection to projection bodies found by Schneider [Scl]. Recall that
an origin symmetric convex body L in R" is called a projection body if
there exists another convex body K so that the support function of L
in every direction is equal to the volume of the hyperplane projection

of K to this direction: for every § € ™', hy,(6) = Vol (K GJ‘). The

support function hz,(0) = max,er(6-2) is equal to the dual norm ||-||z+,
where L* stands for the polar body of L.

Schneider [Scl] discovered that if L is a projection body then the
answer to the Shephard problem is affirmative for every K, and, on the
other hand, if K is not a projection body one can perturb it to construct
a body L giving together with K a counterexample. Therefore, the
answer to the Shephard problem in R” is affirmative if and only if
every symmetric convex body in R” is a projection body.
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The section counterpart of Shephard’s problem is the Busemann-
Petty problem, posed in 1956 (see [BP]). Suppose that K and L
are origin-symmetric convex bodies in R” such that Vol,_; (K N H) <
Vol,_i (LN H) for every central hyperplane H in R". Does it follow that
Vol,,(K') < Vol,(L)? The answer is affirmative if n < 4 and negative
if n > 5. The solution appeared as the result of a sequence of papers
[LR], [Bal], [Gi], [Bo], [lu], [Pa], [Gal], [Ga2], [Zh2], [K4], [K5], [Zh3],
[GKS] (see [Zh3] and [GKS] for historical details).

The class of intersection bodies introduced by Lutwak [Lu] in 1988
plays the same role in the solution of the Busemann-Petty problem, as
projection bodies in the solution to Shephard’s problem. Let K and
L be symmetric star bodies in R”. We say that K is the intersection
body of L if the radius of K in every direction is equal to the (n — 1)-
dimensional volume of the central hyperplane section of I perpendic-
ular to this direction, i.e. for every £ € S™7', ||£]|x = Vol,—1(L N &L).
A more general class of intersection bodies can be defined as the clo-
sure of intersection bodies of star bodies in the radial metric d(K, L) =
supgegn-t |pc(€) — pr(€)]-

Lutwak [Lu] found the following connection between intersection
bodies and the Busemann-Petty problem (the original result of Lut-
wak was slightly improved in [Gal] and [Zh1]): if K is an intersection
body then the answer to the BP-problem is affirmative for every L, and,
on the other hand, if L is not an intersection body one can perturb it to
construct a body K giving together with I a counterexample. There-
fore, the answer to the Busemann-Petty problem in R” is affirmative if
and only if every symmetric convex body in R™ is an intersection body.

We would like to mention several facts concerning intersection and
projection bodies, which can be found in [K6], [K4]:

The unit ball of any n—dimenstonal subspace of LT with 0 < g < 2
is an inlersection body.

In particular the unit balls of £7 for 0 < p < 2 are intersection bodies.

For 2 < p < oo, the unit ball of the space (7 is an inlerseclion body
if and only if n < 4.

As stated above, the unit ball of any subspace of L' is an intersection
body. On the other hand, if K is a projection body, then K™ is the
unit ball of a subspace of L; (Bolker, [Bl]). Thus:

The dual body of projection body is an intersection body.

Note that the converse is not true. Indeed, a cube in R? is an inter-
section body, but the dual body, which is the cross-polytope, is not a
projection body.
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Let us outline the analytic solution to the Busemann-Petty problem
from [GKS]. The first ingredient is a Fourier analytic characterization
of intersection bodies from [K4]: an origin symmetric star body L in
R™ is an intersection body if and only if the function ||-||7' represents a
positive definite distribution on R". Next, it was proved in [GKS] that
if L is an infinitely smooth convex body in R”, and k # n — 1 is an
even integer, then the Fourier transform

(- 17N = (=) *n(n — k — 1) ALL(0), (9)
where
Are(t)=Vol,_ (LN {&-+1€}), teR

is the parallel section function (or x-ray function) of L in the direction
of € (if k is odd the right-hand side of (9) is a little more complicated).
This formula, together with the Fourier analytic characterization of
intersection bodies, shows that if n is an even integer then an infinitely
smooth convex body . € R™ is an intersection body if and only if

(=) AP P0) >0,  VeEe s (10)
If the body L is convex then, by Brunn’s theorem, the central sec-
tion is maximal among all sections orthogonal to a given direction,
so A7 £(0) < 0 for every £ € S"7', and, therefore, putting n = 4 in
(10) we see that every symmetric convex body in R* is an intersection
body. However, if n = 5 we have to deal with the third derivative of
Are which is not controlled by convexity, and one can easily construct
symmetric convex bodies in R® that are not intersection bodies. This
explains the transition between the dimensions 4 and 5 in the solution
to the Busemann-Petty problem.

We now outline some ideas of the Fourier analytic proof of Shephard’s
problem in [KRZ]. First of all, projection bodies admit a Fourier ana-
lytic characterization similar to that for intersection bodies: an origin
symmetric convex body I, € R™ is a projection body if and only if the
Fourier transform of || - ||z« = hr(+) is a negative distribution outside
of the origin (this is essentially a combination of results of Bolker [BI],
who proved that projection bodies are polars of unit balls of subspaces
of Ly, and P.Levy [Le], who characterized subspaces of L; in terms
of negative definite functions). As pointed out in [KRZ], this Fourier
characterization, together with formula (9) (put k£ = n), implies that if
n is even then an origin symmetric convex body L € R” is a projection
body if and only if

(—1)"2A%) (0) >0,  Vee s
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Again, since convexity controls the derivatives only up to the second
order, we conclude that every symmetric convex body in R? is a projec-
tion body, but this is not the case in R3. This explains the transition
between the dimensions 2 and 3 in the Shephard problem.

The result of Lutwak relating intersection bodies to the Busemann-
Petty problem and the result of Schneider relating projection bodies
to the Shephard problem admit almost identical proofs based on a
spherical version of the Parseval formula (see [K3], [KRZ] for the cases
of sections and projections, respectively).

Let us outline the Fourier analytic proofs of the ”affirmative” parts
of Lutwak’s and Schneider’s connections. First, Lutwak’s result is that
if K is an intersection body then the answer to the question of the
Busemann-Petty problem is affirmative for this K and any symmetric
convex body L. We translate this statement into the language of Fourier
analysis. By the Fourier characterization of intersection bodies, we
have that (|| - ||%')" > 0 on S™"'. By (3), the condition that central
hyperplane sections of L have greater volume than the corresponding
sections of K is equivalent to (|| -||7"*")" > (]| - |&*+")" everywhere on

S™=1. Therefore,

[ IRV OUAR Y@ de< [ QRO de

S—l

By a version of Parseval’s formula on the sphere, we can remove the
Fourier transform in the latter inequality:

/ [Ed (e drﬁﬁ/ lell& =" de.
Sn—1 anot

Now the quantity in the left-hand side is equal to nVol,(K'), and the
expression in the right-hand side can be estimated from above using
Holder’s inequality. We get

Vol (K) < ([ el de) ([l o) -

(nVol,(K)) "™ (nVol, (1)) "™/,
which implies Vol,,(K) < Vol,(L).

The affirmative part of Schneider’s connection reads as follows: if
L is a projection body, then for any symmetric convex body K the
answer to the question of Shephard’s problem is affirmative. Using (4)
and the Fourier characterization of projection bodies, we formulate the
latter statement as follows: if K and L are origin symmetric convex
bodies in R™ with curvature functions fx, fr, and support functions
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hi, hy satisfying hp(0) < 0 and fx(0) > fu(0), V0 € S™', then
Vol (K') < Vol,(L).

To prove this statement, note that, by a version of Parseval’s formula

on the sphere,
[ oRows [ -os

Sn—1 Sn—1

is equivalent to

/ hi(0) fx(6)do < / hi(0)fL(6)d6o.
sn-1 sn-1
Using integral representations of the mixed volume and volume (see
[Ga3], page 354):

Vi(K, L) =1 / h1.(6) fx (6)do, Voln(L)=% / hi(6) f1(0)d6,

Sn—1 Sn—1

we get
Vi(K, L) < Vol,(I)

Now, the well-known Minkowski’s inequality,
Vi(K, L) > Vol,(L)»Vol,(K)*",

immediately implies the result.

4. APPENDIX

Here we discuss the analog of formula (4) in the case of general
convex bodies. We start with the definition of extended measures.

Let p be a finite even Borel measure on S™~'. A distribution pu.
is called the extended measure of p if, for every even test function
¢ € S(R™),

edh =5 [ 07 00)dute). (1

Sn—1

In most cases we are only interested in test functions supported outside
of the origin, for which (r=2,¢(r€)) = [, r=>¢(ré) dr. For the general
definition see [GS].

It is shown in [KRZ], that for every § € S™~!

T

w(0)= =5 [ 10-slduty). (12)

Sn—1
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An immediate consequence of the above identity is the following Fourier
analytic formula for projections.

Let K be a convex origin symmetric body in R™ and let S.(K') be the
extended measure of the surface area measure S,—1(K,-). Then

1 ——
Vol,_, (K aL) = ——S.(K)(6), Voes. (13)

Another consequence is the Fourier analytic characterization of zonoids
(projection bodies). We remind that a convex body L in R" is called
a zonoid, if its support function hy, is given by

hule) =5 [ Lo+ oldu(o)

Here p is some positive, even Borel measure on S™~'. The following
fact may be found in [KRZ].

An origin symmetric conver body I in R"™ is a zonoid if and only if
there exists a measure i on S™™' so thal

hr = —(2m)" pe. (14)

We conclude with a simple proof of the well-known Petty’s volume
formula for zonoids:

Vol,, (L) = l/ . Voln_l(L|9J‘)d,u(9).

n

Indeed, Parseval’s identity together with (12), (14), and the standard
formula for the volume of convex body, give

1 1 — L~
Vol (I) = / be(0)dSos(1.0) = / o (L,-)(8)dhn(0) =
Sn—1 Sn—1
%/Voln_l(LWL)d,u(O).
Ssn—1

Similarly, one can use (3) and Parseval’s formula to get an expression
for the volume of a body in terms of volumes of its central hyperplane
sections (see [K7], Section 4):

(2m)'m(n —1)

n

vol,(K) = /Sﬂ_l volu_y (K OVER) (|| - 7€) de.

In the case, where K is an intersection body, (|| - ||z )" represents a
measure on S"7!, so the latter formula is an analog of the formula for

projections.
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