THE k-DIMENSIONAL RADON
TRANSFORM ON THE n-SPHERE AND
RELATED WAVELET TRANSFORMS

BoRris RUBIN AND DMITRY RYABOGIN

ABsTRACT. Continuous wavelet transforms, associated with the k -dimensional sphe-
rical Radon transform Rf on the n-dimensional unit sphere S™,n > 2, are introduced.
It is assumed that f € LP(S™), 1 < p < o0, or f € C(S™). For the operator R
and for its left inverse R—! explicit representations are given in terms of the relevant
continuous wavelet transforms.

1. INTRODUCTION AND MAIN RESULTS

Let S™ C R**t! be the unit sphere and let = be the set of all k-dimensional
totally geodesic submanifolds of S™, 1 < k < n — 1. Given a continuous function f

on S™, consider the k-dimensional spherical Radon transform
RFQ) = [ f@yim(@),  ¢e= (1)
3

where dm is the natural measure on ¢ induced by the Lebesgue measure on S™ and

normalized so that [ dm(z) = 1. This transform was studied by different authors

3
(see, e.g., [1], [6], [7], [8], [11], [13], [24]) and plays an important role in geometrical
problems for convex bodies ([2], [9], [10], [26]). In the present article we develop a
wavelet approach to the inversion problem for (1.1). The following approaches to

this problem, which differ from ours, are known in the literature.

1991 Mathematics Subject Classification. 44A12.

Key words and phrases. The spherical Radon transform, continuous wavelet transforms.

*Partially supported by the Edmund Landau Center for Research in Mathematical Analysis
and Related Areas, sponsored by the Minerva Foundation (Germany).

— 4 a ~ o~ Xy



2 B. RUBIN AND D. RYABOGIN

S. Helgason [11] suggested two inversion procedures based on the duality princi-

ple. The first formula reads ([11], p. 93)
f=P(A)R*Rf, (1.2)

and works only for k& even. Here P(A) is a certain polynomial of the Laplace-
Beltrami operator on S™, R* is the dual transform which designates the average
over the set of all ¢ passing through z. The second inversion formula ([11], p.

99), which works for all 1 <k <n —1, is as follows:

flz) = g[(ﬁ)k /()U(Rzos_l(U)Rf)(x)Uk(u2 NGy (1.3)

u=1

Here ¢! = (k— 1)! opyq/2F, Rf is the average of Rf over the set

éOS‘l(v)
of all ¢ at the distance p = cos™!(v) from z. This formula is based on the
observation that RiRf can be written as a fractional integral of order k/2 of a
certain average of f ([11], pp. 98, 99).

R. Strichartz ([24], p. 725) proved the following inversion formula:
f=c"R(~A)*'2E_, R*Rf. (1.4)

Here ¢, = 2*T'(k+1/2)T'(n/2)//7 T'(n—k/2), R denotes the restriction operator
from functions on R"*t! to S™; E_;f is the extension of f to a homogeneous
function of degree —1; A denotes the Laplacian on R"**1.

T. Kakehi ([13], p. 319) showed how to use (1.2) in the case of k£ odd. He
constructed an operator L such that LRf is the (k + 1)-dimensional spherical
Radon transform and then applied (1.2) to LRf.

One should mention the papers by I. M. Gelfand, S. G. Gindikin, M. I.Graev
[6], S. G. Gindikin [7], E. L. Grinberg [8] (and references therein), where inversion
formulas are given in the context of projective spaces. A series of inversion formulas
like (1.2), which work for all 1 < k < n—1 and involve fractional integrals associated
with Rf, was obtained by B. Rubin [19]. There is a number of remarkable papers
by F. B. Gonzalez, E. L. Grinberg, T. Kakehi, E. T. Quinto and others devoted to
the range characterization of Rf (see [11] for references).

All aforementioned methods work well for smooth functions. Applicability of
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SPHERICAL RADON TRANSFORM 3

investigation (see discussion in Section 5). In the case k = n — 1 the Radon trans-
form (1.1) for nonsmooth f was inverted in [18] in terms of the relevant continuous
wavelet transforms.

In the present paper we extend the results from [18] to all 1 < k < n — 1.
Our inversion formula has a simple form and agrees with the general philosophy
developed in [17]. Following [6] and [24], we regard (1.1) as a function Rf(v) on
the Stiefel manifold V = V,, ;1 ,,— of all orthonormal (n— k)-frames in R**1. Here
v=(vl,...,o" %) € Visan (n+1) x (n — k) matrix with pairwise orthogonal unit

column vectors v?,...,v" % ¢ R*+1,

For f € C(S™) the Radon transform (1.1) can be written as

Rf(v) = |;—k| / from)dn, veV. (1.5)
Sk

Here and on dn is the natural Lebesgue measure on S*, r, € SO(n+1), ryvg =
i
v, vo = (€gsa,.--,ent1) is the coordinate (n — k)-frame, e; = (0,...,1,0,...,0) €
R+,
Let us state our main results. For f € L'(S™) and ¢ € L'(V), the intertwining

continuous wavelet transforms, associated with (1.1) are defined by

W (v, 1) :tk_"/f(a:)w(|ac-v|/t)da:, vEV, t>0, (1.6)
S'I’L

V?/cp(a:,t) = tk_"/go(v)w(|ac -v|/t)dv, zeS™ t>0. (1.7)
%4

Here w is a sufficiently nice “wavelet function” on Ry = [0,00), and z - v is an

(n — k)-vector defined by

/Ul..-/U n+1 n—|—1
- - 1 n—~k 7.
T-U=[T1, s Tpt1] | .. = E a:jvj,...,E zjvi " ;
! y i=1 i=1

dr and dv are the corresponding SO(n + 1)-invariant measures on S™ and
V, normalized so that o, = |S"| = 2z2(»+tD/2/T ((n 4+ 1)/2); |V| = 0non_1--0ks1
(see e.g., [12], [21, p. 208]). For k = n — 1 transforms (1.6) and (1.7) are identical

1 e e 71 _*7 41 o T 0]



4 B. RUBIN AND D. RYABOGIN

Theorem A. Let

/Tj+"—k—1w(T)dT =0 Vj=0,24,...,2[k/2], (1.8)
0
([k/2] is the integral part of k/2),

/Tﬂ+n—k—1|w(7_)|d7- < 00 fo'r' some ,3 > k. (1‘9)
1

Suppose that ¢(v) = Rf(v), v € V, where f is an even function belonging to
LP(8™),1<p< oo, or f € C(S™). Then

! VT/ z,t . r VT/ z,t
g_géflﬁzﬂﬁa/gﬁ%%—Lﬁ=af@L (1.10)
0 [
V| F(%) F(_k/Q)ng_lw(T)dT iof k is odd,
= WE) sy % ‘ ' (1.11)
&R/ fT T)logTdr if k iseven.

The limit in (1.10) is understood in the LP-norm and in the a.e. sense. For

f e C(S™), the limit in (1.10) is interpreted in the sup-norm.

The next statement contains an analogue of the Calderén reproducing formula

for the k-dimensional spherical Radon transform.

Theorem B. Let
/w ™=kldr =0, / lw()log 7|7 *ldr < oo. (1.12)
0 0

If fe LP(S™),1 <p< oo, or f € C(S™), then

Wy = B R (),

dt = lim wmﬁ

O\»8

€

Antn=k)/2 T po1, 1
e n—k—1155 _
T (=72 /w(T)T og TdT,
0

where the limit is understood in the LP—norm or in the sup-norm.

(1.13)
8=

Remark. One can define the Radon transform (1.1) as a function on the dual Stiefel

manifold V = V41 g1
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5

Here 7, € SO(n + 1) : fyup = u,ug = (e1,...,exp1) € V is the coordinate

(k+1)-frame. It is clear that Rf(u) = Rf(v) provided that columns of the (n+1) x

(n + 1)-matrix (u,v) generate an orthonormal basis of R**!. One can reformulate

Theorems A and B in terms of Rf. In this case the intertwining continuous wavelet

transforms, associated with Rf, are defined by:
Uf(u,t) = tk_"/f(x)w(\/l — |z - ul?2/t)dz, weV, t>0,
Sn

U f(w,t) = tk_"/(p(u)w(\/l Tl uP/t)du,  weST, t>0.

\%4

2. PRELIMINARIES

Lemma 2.1. Let f € L'(S™), f > 0. Then
IRfllzrvy = 00 VI f Il gsm-

Proof. By (1.5),

IRfllLr vy = Jikb[dnv/f(mn)dv= Jik/dn/dv / f(rqwm)dy

Sk V. SO(n+1)

14 V|
= U—k/dn / flan)da = Z||f||L1(Sn).

Sk SO(n+1)

(1.14)

(1.15)

(2.1)

We shall use the bispherical coordinates on S™ (see, e.g., [25], p. 12) defined by

x = Ecos +nsing, £ € ST CRE pe SEC R 0<6< g

R = span (ex, . .., ext1); R*™* = span (ex12,.. ., €nt1)-

According to (2.2),
dz = sin*0 cos™ %710 dod¢dn.

For v € V, 6 € [0, /2], we introduce a mean-value operator

1 .
Meosg f(v) = ——— / df/f(Tu(fC()Se + nsin6))dn,
On—k—10k
Sn—k—1 Sk
so that
w/2
/ f(z)dz = op_p_10% / sin *6 cos™* 710 Mcose f (v)db.
Ssn 0

h Y B Y A 4 1 ey 1 . m™MAx rs._\ D L7\

(2.2)

(2.3)



6 B. RUBIN AND D. RYABOGIN

Lemma 2.2. Let f € LP(S™), 1 <p < co. Then

sup (| Meoss fllrvy < (VI/ow) " 1 lzo(sm), (2.4)
6€[0,m /2]
gli)frﬂ/z |Mcose f — Rf”LP(V) = 0. (2.5)

If f € C(S™), then Mcosef — Rf as 0 — w/2 uniformly on S™.
Proof. By (2.3) and Minkowski’s inequality,

VIt/p . 1/p
Meosa sy < [ de fin ([ 15Grua(ecoss +nsino))pg)
On—k—10k
Sn—k—1 Gk SO(n+1)

= (|V|/0'n)1/p ||f||Lp(5n).

Furthermore, |[Mcosef — Rf||z»(v) does not exceed

M / déh/d77 ( / | (rgu, (§cost + nsin ) — f(rgvon)l”dg> l/p'
Sk

On—k—10k
Sn—k—1 S0 (n+1)

The last expression tends to 0 as § — w/2 provided f € C(S™). Since C(S™) is
dense in LP(S™), 1 < p < oo, we have (2.5). The proof of Mcosef — Rf as 6 — /2

uniformly on S™ is similar with || - ||, replaced by the corresponding sup-norm. O

Consider the intertwining operators which were introduced in [19]:

Af(v) = / a(z- o) f(@)dz,  Ap(z) = / a(lz - v])p(v)dv.

sn 1%

Lemma 2.3. Let f € LP(S™), o € LP(V), 1 <p < oco. Then

1Afllzoqvy < onr—10k (VI/on) /" [lall | fllzo(sm)s (2.6)
14¢llLo(s7) < Tnk10% (V|/an)' "7 Jlall el Lo v): (2.7)
w/2

where ||a|| = [ sin®*6 cos"~*=16 |a(cosh)|db.
0

Proof. Replacing = — 7,z and passing to the bispherical coordinates (2.2), we

have:
w/2

AF(0) = 0p_p10% / a(cosh) sin*0 cos"F10Meose f(0)d0. (2.8
0
Now (2.6) follows from (2.8), (2.4) and Minkowski’s inequality; (2.7) follows from

*
a~N 1L 1. 12 f/ N A f N\ T " / N Afr/r \ 71 ™



SPHERICAL RADON TRANSFORM 7

Given z € S™ and t € (—1,1), denote

_ 42)(1-n)/2
M f(z) = 1=t

f(y)do(y), (2.9)

On—1
{yesS™: z-y=t}

where -y = Z1y1+- - -+ T 1 1Ynt1 is a usual inner product in R**! do(y) designates
the corresponding Lebesgue measure induced by that on S™. The integral (2.9) is
the mean value of f on the planar section of S™ by the hyperplane z -y = .

Lemma 2.4. (cf. [11], p. 97). Let r, € SO(n + 1) be such that rzen41 =z € S™.
Suppose that f € L'(S™). Then

1
/ Rf(ropry yvo)dp = o / M.vp f (2)dn (2.10)
SO(n) Sk

for a. e. z € S™ and for any v € SO(n+1).

Proof. We start with the obvious formula

/ p(pz)dp =M, ,, p(ent1),  z€ S,
SO(n)

and set z =77 1yn, ¢o(y) = f(rey). This yields

/ f(repry 'ym)dp = My.qy f (). (2.11)

S0(n)

Since Rf(av) =1/oy [g f(aryn)dnVYa € SO(n+1), by (1.5) and (2.11) we obtain

/ Rf(rzpry tyvo)dp = —/dn / frepry tyn)d _/Mz yn f(@

S0(n) Sk S0(n)
O
3. PROOF OF THEOREM A.
In the following we deal with the Riemann-Liouville fractional integrals
t 1
U0 = [ oD 000 = [ o he Bea>0,
0 t

Is o) MUY Y T Y 1* T . vy 101



8 B. RUBIN AND D. RYABOGIN

1
Lemma 3.1. Let a be such that [z *1(1 — 22)(k=V/2|q(2)|dz < oo, and let
0
f € L*(S™) be even. Then for a.e. x € S™,

ZRf(I)E/a(|.’L‘-’UDRf(’U)d’U=Ck,n/zn_k Ya(z )(Ik/2 )(2%)dz (3.1)

%4
where g(u) = (1 - u)~V/2M, /7= f (),
W 2VIT((+1)/2)
" T (n-k)/2)

(3.2)

Proof. By (2.1) and (2.7) the expression ARf(z) is well-defined for a.e. = € S™.
Fix any such z, and replace v — r,v, where r, € SO(n + 1),rze,11 = 2. We get
ARf(@) = [ alenss - oD RFGa0)ds = V] [ aensa oD RIrayu)dn.

4 SO (n+1)
Next we replace v — pr; 1y, p € SO(n), and integrate in p. Since e, 11 - pry *yvy =

€nt1 - Ty “yvg, we use (2.10) to obtain

ARf(z)=|V| / alens1 - 75 vv0])dy / R (roprs yu0)dp

SO(n+1) S0(n)
V —
:% / a(|en+1'T;l’YUO\)d'Y/Mm-vnf(ﬂf)dn (rz 'y =)
S0(n+1) Sk
1%
:'U—' / a(lens1 - avol)da / M., anf (@)dn
50(n+1) Sk
174 2‘/
||/|yv0\)iy/Myf ||/\yvo\dy/Mgf

y-n>0
Passing to bispherical coordinates y = £'cosf + 7' sinf , we have |y - vg| = cosf ,

y-n=(n"-n)sinf. This yields

/My /(@ / My sin (@)l = 0 10/1 2)K/2-1M, o f (2)d

yn>0 n-n'>0

and therefore AR f(x) is equal to

/2 1
9 Y, P
|V|Jk 10n—k-1 /Sinke cos™ k-1p a(COS@)d@/(l—TQ)k/Q_IMT sint(x)dT
On
0 0

1 1
_ 2WVlok-10n—k—1 /Zn_k_1(1_Zz)(k_1)/za(z)dz/<1_7_2)k/2—1MT\/1_22f($)d7_

g,




SPHERICAL RADON TRANSFORM 9
Finally we replace 7v/1— 22 by /1 —wu and obtain (3.1). O

Consider the dual wavelet transform (1.7) applied to ¢ = Rf. By setting
wi(r) = TPy (1), b= 1w,
owing to Lemma 3.1, we get
Corollary 3.2.

(WRF) (1) = S

g and cy p, being the same as in Lemma 3.1.

Proof. By (1.7) and (3.1),

VRO w0 = 125 [t () (1292

_ _Cknm k=10, (s)ds wWlu — 122)6/2-1 4y,
= | (5)d 2/29( (= 2221

1/t2 1/t?

— 21_‘6(’2’7/1'2) /T("—k)/Llw(\/;)dT/g(t2r)(r—r)’“/2—1dr

T

1/t2 1
Ck, tk k/2 Ck, k=2 U
= # / g(t27')(IOJ/r wy)(r)dr = HT /g(u)h (t_2> du. 0O
0 0

Remark 3.3. By Lemma 4.12 of [16], h € L*(Ry) provided

k/2—1, if k/2€N,

/Tjwl(T)dTZO Vi =0,1,...,m:{ k2], if k/2¢ N,

(3.4)

752wy (1) |d7 < . (3.5)

H\S (=}

Proof of Theorem A. We proceed as in the proof of Theorem 1.1 from [18]. Denote

_ —n/ _
As) = L2 V(s), A(r) = _Cen A= THTTEL (T TEN
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memzfiwvwﬂw@,

Sn

and prove the equality
de T dt
T.Rf(z) % /WRf (2,8) 57 = (LeD) (@)

By (3.3),

T | h Vi dt

Chyn [ dl _ Cknm uy @

J.Rf =% /tg g(u t2)du- : /g(u)du/h(t2>t3
0 €

= cz )\(s)g(e s)ds.

0

Using (2.12) from [18] and the definition of ¢ (see Lemma 3.1), we get

JRf = %en / A(s) (1 — 25) /2 M e fds

J

which gives (3.8).

(3.7)

(3.9)

To complete the proof it remains to show that L.f — af as ¢ — 0 in the

required sense. For this purpose one can use a standard machinery of approximation

to the identity. As in ([18], p. 212), for each spherical harmonic Y}, j even, we have

lim £.Y; — aY;,  a= C’Z" /,\(s)ds
0
where by Lemma 2.4 from [18],
T(—k/2) [ s*/ 2w (s)ds if k/2 ¢ N,

. 0
[ Asyds = e
0

V77 [ gk/2y.(s)logs ds  if k/2 € N.

(3.10)
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provided
o0
/sj'wl(s)ds =0, Vj=0,1,...,[k/2],
0
/sﬂ\w1(3)|ds < oo for some (B> k/2.
0
Thus, « in (3.10) has the form (1.11), and the result follows. O

4. PROOF OF THEOREM B

Fix any t > 0. By (2.6), W f(v,t) is well-defined for a.e. v € V. Passing to
bispherical coordinates in (1.6), we obtain (cf. (2.8)):

1
On o e T
Wi,t) = P20 [ gty EDignioty (D) 0, f)dr
0

and therefore

1

oon ot B . 7 T dt
/+)dt Gk 10% /(1 . Tz)(k 1)/2, n—k 1MTf(U)d7'/w (;) ftn—Fk

0

1/e
= Op—k—10k /(1 —2r)k=D2 01 F(0)k(T)dr, (4.1)
0

=771 [ w(s)s"*~1ds. By (1.12),

oo e o] 1
ke L'(Ry) and /k‘(T)dT = /'w(s)s”_k_1 log B ds
0 0

(a simple proof of this assertion can be found in ([16], p. 190). Owing to Lemma
2.2, one can pass to the limit in (4.1) in the LP— and sup-norm as € — 0, and the

required result follows. O

5. CONCLUDING DISCUSSION

It is natural to ask, why do we seek new inversion formulae although so many are
available (see Introduction). Below we try to answer this question. It turns out that

similar situation arises in Fractional Calculus, the branch of analysis which studies

N WY B S T P, IS T AR A T A, [ 17  _ * 11. _ TI'1



12 B. RUBIN AND D. RYABOGIN

20]. The point is that numerous transforms of the Radon type can be included in
suitable analytic families of fractional integrals generalizing the classical ones (like
those of Riemann-Liouville on the real line or Riesz potentials on R") to the case
when the set of singularities of the corresponding kernel is a manifold of dimension
> 1. This point of view was exhibited in detail in [17]. It enables one to apply

methods and ideas of fractional calculus to various problems of integral geometry.

In ”one-dimensional” fractional calculus one can discriminate between the Rie-
mann-Liouville and Marchaud fractional derivatives. In fact, they represent dif-
ferent forms of analytic continuation of the same object, namely, the Riemann-
Liouville fractional integral (I$v)(t) = (1/I‘(o¢))ffoo (1) (t — )% Ydr (see [20,
Section 5] and [16, Section 10] for discussion and further details). The derivative
of Marchaud is ”more sensitive” to function spaces (say, LP, C, Lipschitz or what-
ever) we are dealing with, while implementation of the Riemann-Liouville fractional
derivative for the same purposes may have some restrictions and needs special jus-
tification. In many dimensions the method of Marchaud leads to hypersingular
integrals which proved to be a powerful tool in function theory for characterization
of various spaces of fractional smoothness and inversion of operators of the potential
type (see, e.g., the papers by E.M. Stein, P.I. Lizorkin, S.G. Samko, B. Rubin and
others mentioned in [16, 20]. Wavelet type representations of fractional integrals
and derivatives (in different dimensions) generalize Marchaud’s constructions and
are more flexilble. The philosophy of such a generalization was developed by B.
Rubin [16] who extended this idea to operators of integral geometry [17]. At about
the same time continuous wavelet transforms associated to the Radon transform
on R™ were introduced independently by D.L. Donoho and E.J. Candeés [3-5], who

gave them a new name ridgelet transforms (see also N. Murata [15]).

In a sense, formulae (1.2)-(1.4) can be viewed as those of the Riemann-Liouville
type, involving additional averaging operators which are inevitable in the integral
geometrical set up. Our new formula (1.10) can be treated as that of the Marchaud

type (in wavelet interpretation).

Let us examine formulae (1.2)-(1.4) from the point of view of their applicability

to functions f € LP(S™) and f € C(S™). Of course, all ”doubtful” operations in

YE B A A Y A T B Y T, Y (I T S T T T T T



SPHERICAL RADON TRANSFORM 13

is too rough and not so interesting. Further, it is known [24] that

R*Rf(x) = cg /(1 — (z-y))E/2f () dy def Arf(x), ¢k = const.  (5.1)

Sn

This is an operator of the potential type. In accordance with the Sobolev embed-
ding theorem the smoothness of Agf(x) for f € LP(S™) depends on interrelation
between k, n and p. The latter means that differentiation in (1.2) must be treated
accordingly. A similar problem arises in Strichartz’ formula (1.4) by taking into
account that F_;R*Rf is a Riesz potential I*f of a certain continuation f of f
onto R"*1 by homogeneity (see [24, Theorem 4.7]). Thus, in both cases a special
investigation concerning interpretation of differentiation in (1.2) and (1.4) is needed
(cf., e.g., [14. p. 242], [22, Chapter VIII]). In (1.3) we have a similar problem with

differentiation. Moreover, another operation

AR (5.2)

also needs justification. Before setting v = 1, (1.3) gives an average M, f(x) of f
over the geodesic sphere centered at x of radius cos™'u (see (2.9)). If f € C(S"),
then M, f(x) is a continuous function of u € [—1,1] for each z € S™. Hence (5.2)
does not cause any trouble in this case. If f € LP(S™), then, in general, one cannot
set uw = 1 directly, and we only have 1{1_)1111 M, f(xz) = f(z) in the LP-norm. A similar
equality in the almost everywhere sense seems to be an open problem related to LP-
boundedness of the maximal operator f — sup |f(z)|. An analogue of this operator
in the context of R” is bounded if and only irlpr >n/(n—1) [23, p. 471]. By taking
into account related results of C.D. Sogge and his collaborators, it is natural to
conjecture the validity of the same statement for S™.

Resuming this discussion, we note that while (1.2)-(1.4) need additional inves-
tigation, our inversion formula (1.10) is completely justified and coherent with the
LP-setting of the problem. Moreover, (1.10) has many degrees of freedom because
one can choose any wavelet function w he likes. This is especially important in
numerical calculations where it is desirable to have w smooth and well localized.

Note also that (1.10) has the same form as inversion formulas for many other Radon

VR Y T I B 4 T T Y
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