Singular integrals, generated by spherical measures

DMITRY RYABOGIN AND BORIS RUBIN

Abstract. In this paper we study the LP-mapping properties of the Calderén-Zygmund
type singular integral operator T, f(z) = [;° dr/r fzn—l f(z — rf)dv(0), depending on
a finite Borel measure v. In particular it is shown that the conditions v(X,_1) = 0,
E}lpl fEn_l log (1/16-&|)d|v|(6) < oo imply the LP-boundedness of T, 1 < p < oo provided

n > 2, and v is zonal.

1. Introduction.
Let ¥,_1 denote the unit sphere in R", and let @ € LY(Z,_1), [5 _, (0)do = 0.
Consider the Calderén-Zygmund singular integral operator

L) (Tahe) = In TN = n [ @)

proc P e<lyl<p

Qy/lyl)

dy,
ly|™

arising in a variety of problems (we refer the reader to the books [18], [19], [8], [4], [17] and
the survey article [6] for more background information).

It is well-known [1], that if Q@ € L'(¥,_1) is odd, then the limit in (1.1) exists in
the LP-norm and a.e., for all f € LP(R™), 1 < p < oco. This is a consequence of the
corresponding one-dimensional result and the method of rotations. The main difficulty is
connected with the case of 2 even. The following result of W. Connett [2], F. Ricci and
G. Weiss [11], is well-known (see also [21], [6], [15]).

Theorem 1.1. Let f € LP(R"),1 < p < co. If Q belongs to the Hardy space H*(%,,_1),
and fEn_l 2(0)dd = 0, then
(1.2) I sup  [TGPF| lp < cpll fllps

0<e<p<Loo
and the limit (1.1) exists in the LP-norm and a.e.

We also mention the following L2-result (cf. [18], p. 40).

Theorem 1.2. If

(1.3) / QO)dO=0 and  sup / Q(6)] log
Yno1 |§|:1 Y1

then Tq is bounded from L*(R™) into itselfy

1
df < oo,
10 ¢

L. Grafakos and A. Stefanov [7] considered the class of functions Q(f) satisfying the

following conditions:

1
(1.4) /EH Q(0)do = 0, E}l:pl/zn_l 2(6)) ( 1og 7z

Thev showed that this class is different from H1 (X, ) and proved the following theorem.

1+
) o < oo, a> 0.



Theorem 1.3 ([7]). If Q satisfies (1.4), then Tq extends to a bounded operator from
L? into itself for 2 — a/(1+ a) < p < 2+ «a. If, moreover, o > 1, then (1.2) holds for
2-(2+20)/(14+20)<p< 2+ (200—2)/3.

The method of the proof of Theorem 1.3 is based on ideas, which were developed by
J. Duoandikoetxea and J. L. Rubio de Francia [3]. The following questions were posed in

[7, pp. 456, 457]:
Question 1. Are the ranges of indices in Theorem 1.3 sharp?

Question 2. Does the conditions (1.3) imply the LP- boundedness of Tq for some
pF27

In this paper we extend the aforementioned ranges of indices and show that (1.3)
implies the LP-boundedness of Tq for all p € (1,00) in the case n > 2 provided that
Q2 is zonal (i.e. invariant under all rotations about the z,-axis). We also consider a
generalization of T with 2 replaced by a finite Borel measure on ¥,,_;. More precisely,
let M(X,—1) be a space of all such measures. Given v € M(X,,_1), consider the singular

integral operator
Fd
(1.5) (T, f)(z) = lim (T*f)(z) = lim / dr / @ — 10)du(0).
e—=0 e—=0 r
pP—00 P—00 ¢ Sho1

If v is absolutely continuous with respect to the Lebesgue measure dff on X, , i.e.
dv(9) = Q(0)do, Q € L'(¥,_1), then (1.5) coincides with (1.1).

Let us state our main results. The following theorems are related to Question 1.

Theorem A. Let

1 1+a
(1.6) v(Xn_1) =0, sup / <log ) dlv|(0) < oo for some «a > 0.
|€l=1 )
>

Then the operator T, , initially defined by (1.5) on functions f € C°(R"™), extends to a

linear bounded operator from LP into itself provided

1 1 «
) 1y e
(17) 2 pl S 20ta)
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Theorem B. Suppose that f € LP(R™), and v € M (%,,_) satisfies (1.6) for some a > 1.
Then

(1.8) I sup (T3P f[lp < cp I Fllps
0<e<p<Loo
provided
1 1 a—1
1.9 a _‘ ’
(1.9) 2 p < 2c

and the limit in (1.5) exists in the LP-norm, and in the a.e. sense.

As in [7] and in many other papers, related to singular integral operators, we imploy
the ideas developed by J. Duoandikoetxea and J. L. Rubio de Francia in [3]. The possibility
of extending the bounds for p is based on the use of the method of rotations, instead of
a “bootstrap” argument (cf. [17], p. 463), which was used in [7], p. 460.

Our next result concerns Question 2. Let M,(X,,_1) be the subspace of M(3,_1),
consisting of zonal measures.

Theorem C. Suppose that v € M,(X,-1), ¥(Zn-1) =0, n > 2.

(a) If

(1.10) / log ;d\m(@) < 00,
Sact |Only/1— 02
then T, extends to a bounded operator from LP into itself for all p € (1, 00).

(b) Let f € LP(R"),1 < p < cc. If

(1.11) / 0,172 (1 — 02)7P/2d|v|(0) < 0o for some B € (0,1/2),
Yn-o1

then (1.8) holds, and the limit in (1.5) exists in the LP-norm and in the a.e. sense.
The proof of part (a) of this theorem employs recent results of D. K. Watson [20].

Corollary 1.4 (cf. Theorem 1.2). Let n > 2, and let v € M,(X,_1) satisfy (1.6) with

a = 0. Then T, extends to a bounded operator from LP into itself for all p € (1, 00).

Corollary 1.5. Let n > 2. There is an even function Q ¢ H'(X,_;) which satisfies
(1.3) and does not satisfy (1.4) for any « > 0, but, nevertheless, the relevant operator Tq

extends to bounded operators from LP into itself for all p € (1, 00).

The above corollary shows that the ranges of indices in (1.7) are also not sharp.
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Corollary 1.6. Let n > 2. There is an even function Q ¢ H'(%,,_1), which satisfies (1.4)

for all o > 0.

This result was proved in [7] for n = 2. But the proof, given there, was fairly compli-
cated. We show that (for n > 2) examples of functions indicated in Corollary 1.6, can be
easily obtained from Theorem C and geometric properties of the Hardy spaces H'(3,_1)
and H(R™).

We do not know if the results of Theorem C and Corollaries 1.4, 1.5 are true in the
case n = 2. Another open problem is whether Corollary 1.4 holds for non-zonal v if p # 2.

The following observation related to Theorems 1.1 and 1.2 is also of interest. Namely,
the second condition in (1.3) may fail, but nevertheless, T is bounded on LP for all

1 < p < 0. More precisely, the following statement holds.

Proposition 1.7. There is an even function Q € H'(,_1) such that [ Q(#)df = 0

and

df = ¢

(1.12) sup / 0(60)log

1
lel=1J%,_ -0

The paper is organized as follows. In section 2 we prove Theorem A. Sections 3 and
4 are devoted to the proof of Theorem B. The proof of Theorem C and Corollaries 1.4-1.6
is given in section 5. In section 6 we prove Proposition 1.7 and in section 7 give examples
of non-zonal singular measures, satisfying (1.6) for all o > 0.
Notation. Let ¥, 1 = {x € R" : |z| = 1}, 0p1 = [Zn_1| = 207/2/T(n/2); M(X)
denotes the space of all finite Borel measures on a measure space X;|u| designates the
total variation of u € M(X). The notation LP(X) is standard; Co(R™) denotes the space
of continuous on R™ functions, tending to zero at infinity; C2°(R™) is the space of infinitely
differentiable on R™ functions, having a compact support. We define the Fourier transform
of p € M(R™) by ji(§) = Jpa e —2miz-Ldy(z). The group of rotations leaving the =z,-axis
fixed will be denoted by SO(n —-1); e, = (0 ...,0,1). A measure v € M(X,_1) is
called zonal if [, f(yd)dv(¥) = [ | dv(9) for each v € SO(n — 1) and each
f € LY(X,_1,dv). The set of all zonal measures on ¥,,_; is denoted by M,(X,_1). The

letter ¢ designates a constant, not necessarily the same at each occurrence.
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2. Proof of Theorem A.

We begin by proving some auxiliary statements. Following [3], let {t;};cZ be a smooth
partition of the unity on (0, 00) so that

a) ¥ € CY(Ry), 0<y; <1, Zzz/)f(t) =1,

i€ .

b) supp(¢o) C{t e R:1/2 <t <2}, 9;(t) = ¥o(27t),

O vty =1 Vee[1,3/2], W) </t
Suppose also that or(€ M(R™)), k € Z, is a sequence of measures such that

(2.1) okl <1, supp op C {z € R™: 2F < |z| < 2FF1},
and
. c|2k¢| if |2R¢| < 2,

(2.2 ol < {0 e

¢ log |2%¢| if [2%¢] > 2, a>0.
For f € C(R™), we define
(2.3) Tf(z) = (on* f)(2),

keZ,

(2.4) (SiNNE) = FE©w;(€]),  (Tif)(@) =Y Sivrlon * Sjprf)(@), j € Z.

kel
Lemma 2.1. Let f € C*(R™), and
(2.5) Fsup (jowl = 1) s < cllflls Vs € (1, 00).
ke
Then
(2.6) 1T fllg < cllifllg  for all g € (1, 00).

If, moreover, oy, k € Z, satisfy (2.2), then for all X € [0, 1],
(2.7) ITi fllp < e (L4 13D~ £l

provided that A\/2 < 1/p<1—X/2 if 0<A<1,and p=2 if A=1. The constant
¢ in (2.6) and (2.7) is independent of j.

The estimate (2.7) for the smaller range of p’s was proved in [7], p. 460 (it was a

consequence of a “bootstrap argument” and the assumption that (2.5) holds for s = 2).
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But the point is that in the studying of the operator (1.5), we can always assume that the
maximal estimate, corresponding to (2.5) holds for a full range of s (see (2.13)).
PROOF OF LEMMA 2.1. The estimate (2.6) was established in [3], p. 545, and we recall

its proof for convenience of the reader. We have

(1) (2)
ITi fllq < e 1O 1Sjak(on * S 2g < e 1O low * Sjaf 1)l <
keZ ke’

3) @)
< e lQ 18+x 1) 2Ny < e Ifllg-

keZ

Here (1) and (4) follow from the Littlewood-Paley theory [17], p. 267; (2) is a special case
of the more general estimate (4) from [13]; (3) holds according to the lemma on p. 544

from [3]. Furthermore, by Plancherel’s theorem,

I3l < 3 Nowiindla < 3 ( JERAGREGIS
ke

keZ Supp ¥j+k

1/2

Owing to (2.2), this gives (2.7) for A = 1, p = 2 (cf. formula (11) from [7]). For A = 0,
(2.7) coincides with (2.6). The result for 0 < A < 1 follows by interpolation. A

Lemma 2.2. Suppose that o, € M(R"™), k € Z, satisfy (2.1), (2.2), and (2.5). Then (2.3)
extends to a linear bounded operator on LP(R™) provided ‘1/2 — l/p‘ <a(2(l+a))t

PROOF. As in [3, p. 545], for f € C°(R™) we have:

(2.8) Tf=) op+f= ZT f,

keZ

and (2.7) yields [|Tf]l, < ¢ ||fllp (1 + |5)) "M+ A/2 < 1/p < 1 — A/2. Assuming
J

A > (14 a)™!, we obtain the required result. A

Now we pass to the operator T;, from (1.5). One can write T, f = Zzwk x f, where

k€
wr € M(R™) are defined by

9k+1

(2.9) F/g(y dwp(y / dr / (r)dv(9), ¢, = (|v|(Zn_1)log?2)™ ",



g € Cyp(R™), and v satisfies (1.6). Denote by B(R™) the o-algebra of all Borel measurable
sets in R™. As usual [14, p. 116],

(2.10) |wi|(E i , EeBR"),

where the supremum is taken over all partitions of E by A; € B(R"™).

Lemma 2.3. Let E € B(R"), 1g(z) =1 for x € E and 1g(z) = 0 otherwise. Then

dr / 15(r0)dlv|(0) <

Furthermore, for f € L*(R™), 1 < s < oo, the following relations hold:

2k+1

(2.11) wil(B) < cy/

ok+1
a.e
212 (el * 7D @) < e, / |0 / £l L,
Yp—
(2.13) I'sup, (il * 1) lls < ¢ £l
ke
PROOF. The first relation follows by (2.9), (2.10):
2k+1
wik|(E) < ¢, sup Z / 14, (r0)d|v|(0) <
2k

k41
ok+1 2kt

dr/ dr
sup La,( r9 dlv|( / /1 (ro)d|v|(
P . {A}E: \I e(rf)dlv|(0) <

Furthermore, if f € Co(R™), f*(y) = |f(z — y)|, then by Theorem 1.17 from [14, p. 15]
there is a sequence {S7 (y)}5°_, of simple functions, such that 0 < ST < 87 <...< S% <
.. <|f*| and SZ (y) — |f*(y)| for each z and y. Hence

(ol 1)) = (s lim $2) = tim (), 8%) "<

gk+1 gk+1

< T e, / dr / 5% (r6)djv|(6) = / T [ 1t royawio)
Yno1



In the general case f € L*(R™), (2.12) then follows by the limiting argument from its
validity for any convolution (|f|* g¢)(z), gi(x) =t "g(x/t), g € C*(R™), g > 0.
To prove (2.13), we denote by

1

R
(Maf) (&) = sup [ 7o = r0)dr

the one-dimensional Hardy-Littlewood maximal operator in direction 6§ € 3,,_;. By the

method of rotations

(2.14) [Moflls <cllflls, s>1,

¢ being independent of §. Then

2k+1
(2.12)
(el +17D@) < 26, [ [2*0 [ s =ro)idr|apl©) <26, [ (ar)@)dvl0)
z]'n,—l 2"’ En—l
and the result follows by (2.14). A

Lemma 2.4. Let v € M(X,_1) satisfy (1.6). Then there is a constant ¢ = c¢(a,v) > 0
such that for all k € Z,

k f |2kl <2
(215) ool < oS LTEET

¢ log™ 17 |2k¢| if |2k¢| > 2.

This statement resembles the estimate (10) from [7]; see also [3, p. 550]. For conve-

nience of the reader we prove (2.15) by completing some details, which were omitted in
[7].
PROOF. Since @ (£) = @o(2F¢), it suffices to consider k = 0. The inequality

2
- / g / eIV (O)| < clel, 6 <2,
1 2:nfl

is clear because v(X,,_1) = 0. The inequality |@o(¢)| < ¢ (log [£]) 717, [£| > 2, follows by

A

o (€)

(1.6) from the estimate

2
dr b\7 3/2
—27rz7‘9§ e =1 =1

(2.16)




¢ = ¢(7y) = const. The latter holds for all v > 0 (in our case vy = 14a), 0-§ # 0, &' = £/|].
Let us prove (2.16). Integration by parts yields

—27rzr9§
I e TR
2rirf- & |~ w6 - §| 6 - §|

Note also that b > log(3/2) > 1/4, i.e. 1 < 4b. If a — b > 1, then a/(a —b) <1+ b < 5b,

and therefore

(a — b)Te~(a=b) Cy 50\
< < — ] .
A = T Sz Cv(a>

Ifa—b<1,thena/b<(b+1)/b=1+1/b<5and we get A < [ dr/r <1< (5b/a)’. A
It remains to note that Theorem A is a consequence of Lemmas 2.2 - 2.4 (put o = wg,

where wy are defined by (2.9)).

3. Auxiliary statements.

Suppose that 7' is the operator (2.3), ®(z) is a Schwartz function and ®;(z) =
27In® (270 ).

Lemma 3.1. Let f € C(R"™). If | Tfll, < cl fllp, then

(3.1) | sup (@5 %> ok flllp < cllfllp-
JE k=3

The proof of this statement is given in [3], p. 548, and employs the estimate

(3.2 | 5 (o4 @5)(v)] = | (@5 + 5 o) ()] < ¢ %),
k=—o0 k=—o0

Yi(y) = 279"/(1 + |279y|)"TL. Since this estimate will be used below and the proof
of it was skipped in [3], we complete the details. For z € supp ok, y € R™, define
hey(t) = P;(y —tz), t € [0,1]. By (2.2), 6x(0) = ox(R™) = 0. Hence the left hand side of
(3.2) does not exceed

Z \h y(Mdlor|(z) < J -2 (y = nz) ||| dlok| (),

k=—o0



where n =n(z,y) € [0,1], & = yi — mz. The above expression is estimated by

71—1
e 2 [ ke ) el o) <

k=—o0

2k<|w|<2k+1
S j(n+1) 1+|nx2_j| n d n+1 = jHk+1
< 2” (7> <c?2 2 i(y),
<e Y | Ges) i@ < et 3 e
k=—o0 2k<|$|<2k+1 k=—o0

which gives (3.2).

We recall Cotlar’s lemma, which will be used below.

Lemma 3.2 ([17], p. 280). Suppose that {Q,} is a finite collection of bounded operators

on L%(R™). Assume that we are given a sequence of positive constants {y(£)}sc7 with

(3.3) A= "~(t) < oo,
Y/
and
(3-4) 1Q; Qll < [v(i = B)%, Q@RI < [v(i - k)]
here || - || denotes the operator norm on L?. Then the operator @ = Y Q, satisfies
)
QI < A.

For ®y(z) as in Lemma 3.1 and for wy defined by (2.9), we get

v ik =wjge * [ — Pp *wjpr *x f.

(3.5) Q;f = sup | fi.k
ke

Lemma 3.3. Let j > 0. There is a constant ¢ > 0, independent of j, with the following
properties.

(i) If f € LY(R™), 1 < q < oo, then

(3.6) 1Qifllq < clifllg-

(ii) If @ is a radial function, such that |®(¢)| < 1, ®(&) =1 for |¢] <2 and ®(£) =0
for |€] > 3, and f € L*(R™), then

(3.7) 1Qj fll2 < e (1+5)"*Ifll2,
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provided that v satisfies (1.6) with o > 1.

PRrOOF. (i) We have Q; f < su%|wj+k * f| +c M[su%|wj+k * f|], where M is the Hardy-
ke ke
Littlewood maximal operator. Hence (3.6) follows by Lemma 2.3.

(ii) Since (sup|f;x|)? < > < Y| fjkl? then
k K

1Q5£115 < II( Zlfy, )25 = lim - Ifgk () [Pda.
k<N
It suffices to show that for an arbitrary N € N,
(3.8) >, Ifg k(@) Pde < e (1+7) 722 £13,

|k[<N

where ¢ is independent of j and N. To prove (3.8) we make use of Lemma 3.2. Let
{re(t)}52, be an orthonormal system of the Rademacher functions in L2[0, 1] so that 7,(¢) =
sgn sin 2¢t,

1

> |fg, )| dﬂ?‘/dt ‘ > rrenga () fik(@) 2d33,

|k|I<N 0 n |RISN
(cf. [22], p. 176, 180). Fix N € N, t € [0, 1], and set Qi,Nf = g+ nN+1(t) fij k. We claim
that,

(14 )~/
(L+] + [k — i) (Fe72

(3.9) (@] %) @f wllz2 < [yi(k = D), 7k —i) =¢

where c¢ is independent of 74 n41 and N (the same estimate holds for Qz i fc N))-

Suppose for a moment, that (3.9) is true. Then

D (0 = (L4 )7HD2Y (14 j 4 [e) 02 <
te’l eel
o0
<2 (1+ <1+a)/2/ + 4+t N2 —c (1457, a>1,
0

and Lemma 3.2 yields

1> Qinflla=1 D reenvia®fikllz < e (L+5) 7N flla

|k[<N |k|<N
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¢ being independent of 74 n+1(f) and N. This implies (3.8).
Let us prove (3.9). By Plancherel’s Theorem and the definition of ®, (®4(¢) = 1 for
21 < 2),

1(QF ) @k w113 SJ 1= ®k(&)PI1 — (&) P41 (€)D54i (€) 7 £ () [Pdé <
< [ em@Bm e
|&|>21 —min(i,k)
By Lemma 2.4 the last integral does not exceed
(&) [log(27*[¢]) log (27 |¢])] > 72%d¢ < ¢ ol , [IF1I5,
|£|>21—min(i,k)

where aj,k = [(j+k+1—min(i, k))(j+i+1—min(i, k)] 7272% = [(j+1)(j+1+|k—i|)] 7272,

(3

and (3.9) follows. A

Corollary 3.4. Under the conditions of Lemma 3.3 (ii),

(3.10) 1Q;flly < e (W +7)"* M fllps 420, feLP,

where \/2<1/p<1—X/2 if 0<A<1, p=2 if A=1, and c is independent of j.

PROOF: Since (); is not a linear operator we cannot interpolate between (3.6) and (3.7)

directly. Therefore we proceed as in [19], p. 280-281 (see also [8, p. 60]). Redenote

fik = Qjif sothat Q;f =sup [Q;kf| (cf. (3.5)). Let I be the set of all measurable
k

integer-valued functions k(z) on R™. Given k(z) € I, define a linear operator

oJ+k(z)+1
dr
Qrat@=c| [ T [ sa-roo)-
2J+k(z) Yn—1
9Jt+k(z)+1
- J fao-ndy [ [ e - o))
n 2ji+k(z) Y1
so that
(3.11) SUp Qe ()] = Qi (2).
ke
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By (3.6), for f € L? we have

(3.12) | Sup\Qg r@) S| lla =11Qifllg < clliflly Vg€ (1,00).
Moreover,
(3.13) Sup 1Qj k() fllg = Q5 £ lg-

Indeed, by (3.11) there is a sequence {k¢(x)} C K such that Elim Qj k() f ()| = Qj f (),
—00
and therefore elim 1Qj ke(z) fllg = |Q; fllq (use the Lebesgue theorem on dominated con-
—00

vergence together with (3.12)). The last equality implies (3.13) because ||Q; k) fllq <

1Qifllq ke K.
Since (3.6) and (3.7) are valid for @; x(z), then

(3.14) Q) fllp < € (1 +3) 7| llp,

where ¢ is independent of j and k(z), A and p are as required. The relations (3.14) and
(3.13) imply (3.10). A

4. Proof of Theorem B.
Step 1. Let us prove (1.8) for f € C°(R™). Suppose that 2771 < ¢ < 27, 261 < p < 2¢
for some 3,4 € Z. Then

(4.1) TPf=T;f -TK>f,

152f@) =Y s @) + [T [ 1= 1)),

k=j

and

(4.2) sup |TSPf(x)] <2su%‘z (wi * f)(z ‘+2§1€112 (Jowj| * [ £]) ().

0<e<p<oo

By Lemma 2.3 (with s = p),
(4.3) | sup (il = [f) llp < cllflly VP e (1,00).
j
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Let us estimate the first term in the right-hand side of (4.2). We take ®,(z) =
27In®(277z) with ® as in Lemma 3.3 (ii). Then

(4.4) su% | Zwk x f| < Su% ‘((5— ;) * (Zwk * f)‘ +Su]2 ‘(1)1. * (Zwk *f)‘,
S k=j Jj€ k=j i€ k=j
d being the Dirac delta function. By (3.5) and (3.10),
[e.0] o0
(4.5) |sup |6 =@« (e« f)| | <UD @il <l
I€ k=j P =0
provided (1.9). Furthermore, by Theorem A and Lemma 3.1 (choose o, = wg),
(4.6) H su ‘ij*(zwk*f)‘ H <clfllp-
JE k=j P

These estimates imply (1.8).

Step 2. Suppose that f € L?, T, : LP — LP is an extension of the operator T, the
existence of which was stated in Theorem A. Let us prove that A = ||T5Pf —T, f||, — 0 as
e — 0, p — oo for p satisfying (1.9). This result is a consequence of the uniform estimate

(4.7) sup || TSP fllp < Allfllp, A= const.
0<e<p<o

Indeed, if {f,} C C°, lf — fmllp = 0, then

lim
m— 00
A< NTEP(f — Fudllp + 1T fn — To Fmllp + 1T (fm — F)llp <

S A“f - fm”p + ”Tj’pfm - vam”p +c ”fm - f”p

The first and the last terms become small due to m, the second term tends to 0 as ¢ — 0
and p — oo by the Lebesgue theorem of dominated convergence which is applicable owing
to Step 1.

In order to prove (4.7) we note that the uniform inequality || TS w||, < Aljw], holds
for w € C¢° due to Step 1. Hence it can be extended to all f € L?, and we get [|TS” f||, <
Al fl|p- This gives (4.7).

Step 3. Let us prove (1.8) for f € LP. It suffices to check (4.1)-(4.6) for such an f. By

the reasons, which are similar to [1], p. 292, the integral T|i|°° |f|(z) is well-defined for a.e.
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z € R™, which implies the a.e. convergence of the series A;f(z) = ) wi * f(z) for each

=j
Jj € Z. This gives (4.1)—(4.4). The validity of (4.5) follows from Corollary 3.4. Let us check

(L?) m

(4.6). Note that the relation A — 0 in Step 2 implies T,f = lim > wg x f. Suppose for
m—00 7,
£——o00 k=t
j—1
a moment that the series A;f and B;f = > wy * f converge in the LP-norm. Then
k=—o0

A;f “E T, f — Bjf, and the left-hand side of (4.6) does not exceed
(45) I sup 85 4 T ]l + | sup 25 % By |
JE JE

(the series A;f(z) being also convergent in the a. e. sense). By [17, p. 27] and Step 2,

we can estimate the first term in (4.8):
(4.9) | su% D, « T, f| lp <c |1M(T, Nlp<c IT, Fllp < el fllp,

where M is the Hardy-Littlewood maximal operator.

Let us estimate the second term in (4.8). By the reasons, which are similar to [19], p
162-163, the series B;®;(x) converges for each z. Furthermore, by (3.2) (with o = wg),
Bj®;(x)| < cpj(x), j(w) =279"/(1+|279z)**. Hence ®;+B;f = B;®;* f (both

functions belong to LP and coincide in the weak sense), and we obtain

(4.10) Fsup, @5+ B; f| llp < e [l sup (5]« [£) llp < e M Fllp < e lIfllp
JE JjE

By (4.8)—(4.10) we get (4.6).
It remains to check the LP-convergence of the series A,;f and B;f. The operators

A; and B; extend as LP-bounded operators with the norms, independent of j. To see

if k>
kB 2T for Ay, and

this, one should use Lemmas 2.2 and 2.3 by putting o = { . )
0if k<y

0if k>
o = for B;. By Step 1, for f € CZ° we have
wg itk <y

||Su%|zwk*f| ||p<||8uplzwk*f| lp <l _suwp [T2F] lp < cllflp-

Lm 7 <Le<p<Loo

Hence, by the reasons, which are similar to those in Step 2, we obtain an LP-convergence
of Ajf and B, f for f € LP.

Thus, the maximal estimate (1.8) is proved. The a.e. convergence of TS *f then

follows in a standard way (use, e.g., Theorem 3.12 from [19, Chapter II]). A
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5. Singular integrals, generated by zonal spherical measures.
5.1 Auxiliary results.

Lemma 5.1. Suppose that n > 2, A is an SO(n — 1)-invariant subset of ¥, 1, v €
M,(3,_1) (see Notation). If f € Ll(En_l,dy), then

(5.1) /f(ﬁ )dv (¥ /du / F(V/1 =920 + Ope,)d

On—2

where 0,,_9 = |X,,_1| and do is the usual Lebesgue measure on ¥, 5.

PROOF. Let ¥ = (sinf)o + (cosb)ey,, o € Xp_a, cosf = 3J,. Then

A/ s = [ [ eman / ) [ I(sin0ne + (cost)en)dy =

SO(n 1) A SO(n—1)

= /du(ﬂ)z/ f((sin@)o + (cosb)ey,)do,
which gives (5.1). A

Lemma 5.2. Let v and A be the same as in Lemma 5.1. Then for 5 € (0,1/2) and n > 2,

6:2) s [10-67pO) <c [ 1670 ) Fdw6), c=cln ),
[€]=1 " 2

PROOF. Let & = (£,&,), £ € R" L. By (5.1),

d|y| /|\/1—920§+0n§n Blo =

Shos

(5.3) / 6-€Pd|y|(6) =
A

1
)dlv[(6), A(,0) = / ty/(1— 602)(1 — €2) + 0,6, 7P (1 — £2)V/ 2 24L.

If |6, > /T — &2, then |¢,] > /T—02, b % \/(1—02)(1 —£€2)/|0ntn| < 1, and we have

(1 — t2)/2=24y 3 / (1 —t2)n/2=241
A(ga )S_/l (|9n§n|—|t|\/(1—9%)(1—§%))ﬁ < |9n£n| / (1_b|t|)ﬂ <

1
1—t2)"/2 24
g2\9n|—ﬂ(1—0§)—ﬂ/2/( (1175)6 =c |0 P(1-02)7P/2 ¢ = const.

16



If |0, < /T—€2, e |&u] < /T—0Z, then a % —0,6,/\/(1— €)1 -62) €

and we get

; _ 4+2\n/2-2
A,0) <[(1-6%)(1 - gi)]—ﬂm/ (1-1%) dt

(-1,

|t —alf
r 1— t2 n/2_2dt
65:4) <100 - )P + -0, 1) = [ B
(a—1)P
By the formulas 2.2.6.1 from [10], and 9.102.2 from [5] we obtain
2"/2=2B(n/2 —1,1- ) _/n n n a+1
= Fl=—-1,2—=;=—8;——) <
Ia (a + 1)1+B—n/2 (2 2= gig T )—C(”’ﬁ)«x’

0 < B < 1/2. The same estimate holds for I(—a).

Lemma 5.3. Let v € M,(X,_1), n > 2. Then

5.9 sup / log dlv 0,
6:) s [ og g dvi(6) <

2n—l
if and only if
9.6 0)
(5:6) E | o8
PROOF. Denote

i 1
R(En, ) = / (1— )72 10g dt
I [t/(1 = 02)(1 — €2) + 0,60

As in (5.3) we have

_ On-3 def Opn— 3
60 [ o ggdii®) = / R(& 0u)dl (6) © P22 K (6,).

n—1
Using the same notation as in the proof of Lemma 5.2 we have

17

1),



for |0, > /1 —&2:

1
1
R(£,,0,) < [ (1=tH)"/?22] dt <
(En, ’—/1( S s e Ty <
1
<clog —— —|—2/(1—t)"/2 2 log dt<c10g ! +
1 |9n§n| 1— 1 | n| /1_9%

for |6, < /1 —-&2:

1
1
R(&,,6,) <lo c —i—/l—t2 n/2=21, dt
o) <108 st + [ 4= o ] <
(1_t2)n/2—2 1
<1 +e | ——F———dt| < clog—Fm——,
. \,/1_—92[1 2[ It — a|l/4 }—C S0 v/1=62

¢ being independent of a (see the estimate of the integral in (5.4)). Hence (5.6) implies
(5.5). Conversely, if (5.5) holds, then (see (5.7)) K(0) < oo and K (+1) < oo. Since

1

1
KO)= [ gm0 / 2yn/2-2g 4 / d|y|(0)/(1— [2yn/2- 210g| at,
—1

Yn-1 -1 Yn-1

K(+1) = / log . |d|l/| /(1 Hyn/2=2qy,

Enfl
then
1
log ——d|v|(0) < oo, / lo dlv 0,
| o8 ) & rdvl(©) <
En—l En—l
and (5.6) follows. A

The next result will be used in the proof of Theorem C.

Theorem 5.4 (cf. [20], p. 3). Let {0;};cZ be a sequence of finite Borel measures on R",
which for integers m > 0 admit a splitting o; = U;" + L7* into Borel measures Uj" and

L’j" so that

(5.8) U* and L7 are supported in {z : |z| < c2’};

18



Is 20/"’1,

5.9 L™ <e, —|LT()] < — . a>0;
(5.9) L5 [T (&) CIRE
o0
(5.10) sup »_ ||U|| < c.
7 m=0

Here ¢ and a are nonnegative constants, independent of m and j. If the operator

oo

(5.11) Tf= Y ojxf, [eCXR",

j=—o0

extends to a bounded operator on L?>(R™), then T extends to a bounded operator on

LP(R™), 1 < p < oo.

5.2. Proof of Theorem C and Corollary 1.4.
We denote

(512) Fm = {0 € En—l : ‘9n|\/ 1-— 9721 < 2—m}’ an = En—l \F'm;

and set o; = U/" + L7, where the measures L7" and U;" are defined by

9J+1
dr 1
1 m ) =c, | & R
(513) wra=c [ T [aeoano). a=rn
5 TC
27+1
dr
(5.14) U 9) =, / z / g (r0)du(0),
2J T

g € Co(R™). Suppose that f € C(R™). Then the series T, f(z) = J%‘Z (o5 * f)(z) ,
converges for each z € R™. By Lemma 5.3, and by the reasons, which are similar to [18,
p. 40], T, extends to a bounded operator on L?(R™).

Thus, by Theorem 5.4, it suffices to check (5.8)—(5.10). The validity of (5.8) and the

first condition in (5.9) is clear. To check the second inequality in (5.9), we note that

(LMNE) = c,,/dy(e){ 7le2m9.£‘i¢}.
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The integral in brackets is dominated by log 2 and also by 277]0 - £|~1. Hence, it does
not exceed ¢ (27710 - €)= for any a € (0,1). Let o = 1/4, ¢ = £/|¢€]. Then by Lemma
5.2,

c dlv|(0)

(29]€[)r/* ) 1o -¢e

<__¢ / d|v|(0) L _cam/
(PIENVE T (10n]/1—02)1/4 — (29]E))H*

(LM <

It remains to check (5.10). By (5.14),

9J+1
m dr
ol <e [ [avie)<e [avie)
27 I'm I'm

(see the proof of (2.11)). Hence (see (5.12))

Mo <e) /d\l/|(9):c / d|u\(0)[ 3 1]§
m=0 m=0p Spo1 m<log,(1/]0n |M)

1
<c log ——F—==d|v|(0
< E/ TR e

n—1

< 00,

which gives (5.10). The statement (a) is proved. The statement (b) follows from Theorem
B by taking into account that (1.6) holds for all & > 0 owing to (1.11) and Lemma 5.2. A

Corollary 1.4 is a consequence of part (a) of Theorem C and Lemma 5.3.

5.3. Proof of Corollary 1.5.

The required function can be constructed as follows. Denote
A= {0 €Xn1: 1/4 <6, < 3/4}, Ay = {0 € Xno1: 1/3 <@, < 1/2}(C Al),
and let ¢ : ¥,,_1; — R be an integrable even zonal function such that 1(6) > 0 on A; and

1| log(1 + [¢]) ¢ L' (A2). We define

A 10n| 7 (log |0, ~1) "2 (loglog 0, |71) 7% if 0] < 1/100,
Q) =< ¥(O) if 1/4<|0,] < 3/4,
0 otherwise,
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where A\(< 0) is choosen so that [, ~ ©(6)df = 0. For all a > 0,

1 14+« 1 Tta
sup / (10g W) 2(0)|d6 > / (1og W) 2(0)|df = o<,
€= s {6:16,|<1/100} "

i.e. (1.4) fails. Let us prove that Q@ ¢ H'(¥,_1). Assuming the contrary and setting
g(z) = |z|'"Q(z"), ' = z/|z|, if |z| < 2, and g(z) = 0if |z| > 2, we obtain g(z) € H'(R")

(see Lemma 2.5 from [15]). Since g is positive on the open set
AM={z=rfecR":1/4<r <2, 0cA},

then g belongs to the class Llog L on any compact K C A; ([17], p. 128). By choosing
K={z=r0cR":1/2<r <1, 0€ Ay} we get

00 > /g(m) log(1 + g(x))dz = / dr/Q(a:’) log (1 + S:gf?)dm' >
/2

K 1 Ao

> 5 [ ) g1+ p(a))is’ = o
As

due to the choice of 1. This contradiction shows that Q ¢ H'(%,_1).
It remains to note that for dv(8) = Q(6)d# the operator T, extends to a bounded

operator on LP(R™) Vp € (1,00) according to Corollary 1.4 and Lemma 5.3.

5.4. Proof of Corollary 1.6.
Let Ai,Ay and 7 be the same as in the previous subsection. Consider the function
A if 1/5<0,] <1/4,
(5.15) Q) =< v if 1/4<|0,] < 3/4,
0, otherwise,
where A < 0 is such that [ ,(#)df = 0. By Lemma 5.2 the function (5.15) satisfies
(1.4) for all & > 0. On the other hand, Q@ ¢ H'(3,,_1) (see the proof of Corollary 1.5). A

Proof of Proposition 1.7.

Let ¢ = (21,%) € R™, & = (22,...,2,) € R"™Y. We set Q(z) = [~ r" tg(ra’)dr,

z' = z/|z|, where g(z) = u(z1)v(Z),
$1_1(10g|$1|_1)_1_€ if 0< |.’L’1| < 1/100,

u(z1) = 0<e<l,
(1) {0 it |z1| > 1/100,
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_ { sgnxo if 1/100 < |Z| < 2/100,
v(Z) = .
0 otherwise.
It is clear that [,  Q(a')d2’ = [R, g(z)dz = 0. Let us check that @ € H'(X,-1). By
Lemma 2.4 from [15], it suffices to show that g € H!(R").
Since u € H(R) (see Section 6.2 of [17], p. 178), and v € HY(R™ 1) (see Section
1.2.4. of [17], p. 92), there are Schwartz functions ®;(z;) and ®3(Z) with nonvanishing

integrals such that
(6.1) Sup| (1) + u)(w1)] € L'(R), Sup|((®2), * v)(#)] € L'R"™)
>
(cf. Theorem 1 from [17], p. 91). In view of (6.1), sup|(®; * g)(x)| € L*(R™), where
>0

®(z) = Oy (x1)P2(Z) is a Schwartz function. This gives g € H(R™).

Let us check (1.12). We set a(§) = [ [Q(2")] log(1/[€ - 2'|) dz’. Since g(z) =
Yn-1

lg(z)| sgn z1 sgn x5 , then |Q(z')| = fo "~ g(rz')|dr. Hence

J|g \log—dm P/\g x)|log—dm>oo

because the first integral in (6.2) is infinite and the second one does not exceed

‘Z|ux1 |daq / lv(Z |10g—da:<oo

Thus we are done. A

7. Examples.

Below we give examples of singular non-zonal measures, which satisfy (1.6) for all
a > 0. For these measures all statements of Theorem B hold in the maximal range
1<p<oo.
Example 7.1 (n = 2). Consider the distribution function C(z) of the middle third
Cantor set on [0,1] (see [14], p. 145). Let Car(x) = 27C(z/27), so that Cy,(0) = 0 and
Cax(2m) = 2m. By setting

[z, x € [0,27/6],
2n /3 —x, x€[2m/6,2m/3],
g(xz) =< 0, x € [27m/3, 47 /3],

Ar[3 —z, x € [4w/3,107/6],
\ x — 27, x € [107/6, 2],
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we define an auxiliary measure o on [0, 27| by

o(B) = [ db(a@), (@)= (g0 Can) o),
E
E being a Borel subset of [0, 27| (since 9 is a function of bounded variation, this definition
is correct). Let h : [0,27] — ¥; be a canonical map so that h(0) = (cosf,sinf) € ;. We
define the required measure v on ¥; as an image of o under the mapping h. It is clear
that v(X21) = o([0, 27]) = 0. Moreover, one can readily check that the total variation ‘zfqp

of 9 on [0, z] coincides with C(x). Hence for any interval [a,b] C [0, 27], we have

of D b a
ol(a,B) = Vo = V=V = C(b) - Cla),
and therefore [14, p. 157]
(7.1) ol([a,b]) < c (b—a)s:2.
Let us show that
(7.2) sup / 19 - & 7Pd|v|(9) < oo
|€]=1J%,

for all B < logg2 (this implies (1.6) for all @ > 0). Fix & = (cosyp,sing) € ¥;, and

e € (0,2719). Suppose for a moment that

(7.3 [10-¢12dwi0) < [ |eost - 0) Pdio6).

The right-hand side of (7.3) is equal to
(7.4) ( / + / + / ) lcos(p — 0)[Pdlo|(0) = I + I» + I,
Al(p)  AZ(p)  Al(p)

where

Al(p) ={0€0,27] : /2 —e < |0 — | < /2 + €},
A2(p)={0€10,27]: 3n/2 —e < |0 — | < 37/2 + ¢},
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AZ(p) = [0,27] \ (AZ(9) U AL(9)).

The third integral in (7.4) is dominated by (sine) = |o|([0, 27]). Furthermore, by Theorem
1.15 from [9], p. 15,

h<e [ 0-p=51Pdol0)=p([ + o6 € Ake): 10 -0 - 51 <t s

AL(p)
Both integrals are dominated by a constant which is independent of ¢. For the second

integral this is obvious. For the first one the statement holds due to estimate
o|({60 € Ac(p) : 10 — o —7/2] < t}) < |o|({6 € [0,27] : [§ — ¢ — /2| < t}) < c 1832

which follows from (7.1). For I the argument is similar.

It remains to prove (7.3). For N € N denote D¢(N) = {9 € ¥y : [9-&|7# < N},
and let {S§,(9)}%_; be a sequence of simple functions, such that for each 9 € D¢(N),
0<85<...<8 <...<[9-¢P and S5,(9) — |9-&7F as m — oo . By the reasons,
which are similar to those in the proof of (2.11), we have |v|(E) < |o|(h~'(E)) VE €
B(X1). Hence,

[ e aio) = [ s50) dwio) <

De(N) De(N)

T m—oo
h=1(D¢(N)) h=1(D¢(N))

< lim / (S5 0 )(6) dlo](0) = / | cos(o — 6)Pdlo|(6),

where h=1(D¢(N)) = {0 € [0,27] : | cos(p — 0)|7# < N}. Tending N to infinity, we obtain
(7.3).

The next example is motivated by Corollary 4.3 from [3], p. 553.
Example 7.2 (n > 2). Define a measure v on ¥,_; by

/ g(9)dv () = / 9(0)2Ay)dry, / Q(y)dry = 0,

where I' = {¢ € 3,1 : 9, = 1/2}, Q € LY(T) for some q > 1, g € C(X,,_1); dry is the

induced Lebesgue measure on I'. By the reasons, which are similar to those in the proof
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of (7.3), and by Hélder’s inequality we have

/ €0 Pdlv|(9) < / &yl P10 dry < K7 (|2 [z,
En—l F

where 1/p+1/g=1and K = [ |¢-y|PPdry is bounded uniformly in & for 0 <3< 1/2p
r
(cf. Lemma 5.2). By Theorem A the relevant singular integral operator 7, is bounded on

LP for all 1 < p < oo.
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