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Abstract. Wavelet type representations of fractional integrals and derivatives
are studied in the framework of LP-spaces. These representations generalize the
notion of Marchaud’s fractional derivative and are intimately connected with the
Calderén reproducing formula. By choosing a relevant “wavelet” measure we
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the conjugate Riesz potentials, the inverses and linear combinations of these op-
erators.
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Introduction

Fractional calculus is a well developed branch of real analysis with a rich history and
a wide field of applications (see e.g. Samko, Kilbas and Marichev 1993, Gorenflo and
Vessella 1991, Miller and Ross 1993). Fractional integrals have proved to be a convenient
tool for studying function spaces of the fractional smoothness. Concerning the modern
theory of function spaces the reader is referred to the books by H.Triebel (1983, 1992)
where further references can be found. Numerous modifications of fractional integrals
and derivatives (e.g, those of Riemann-Liouville, Weil, Marchaud, Riesz and many oth-
ers) are known. Sometimes such modifications represent essentially different operators (cf.
Riemann-Liouville fractional integrals, Riesz potentials and Bessel potentials). But some-
times some of them correspond to the same operator (on sufficiently good functions). The
use of different constructions is caused in the last case by the wish to extend corresponding
definition to wider classes of functions (cf., e.g., Liouville fractional derivatives and those
of the Marchaud type).

In the present paper we introduce new representation for various fractional integrals

and derivatives in the form

o
f*u

cy(a) ) ti—«
0

(0.1) Aof = dt, acC,

where 1 is a suitable dilated measure (or distribution), ¢, (@) is a normalizing factor. Why
is this integral so attractive? In the case o =0, A% coincides with identity operator or
with a Hilbert transform (depending on v) and is intimately connected with Calderén’s

reproducing formula

1 Oof*ut*vt
2 = dt.
02 f cu,v/ t
0

(see e.g. Frazier, Jawerth and Weiss 1991, Rubin and Shamir 1995, Rubin 1995 and

references therein). The operator (0.1) gives rise to natural generalization of (0.2) which

we intend to investigate in this paper.



Apart form this, various fractional integrals (and derivatives) have the form (0.1).
Really, by choosing v = 41, (the Dirac unit mass at the point z = 1) and ¢, (a) = I'(a) we

obtain the well known Liouville fractional integral

wp_ L [f@=0 1 [ fdy
A ‘r<a>0/ i =i | Gy

—0o0

By putting v = f: (j) (—l)jéj, Rea > —/, with the unit Dirac masses at the points
7 =0,1,---,¢, orie: (Lan see that A®f is just the Marchaud fractional derivative of f of
the order —a (up to a constant factor, cf. Samko, Kilbas and Marichev 1993, Rubin
1994). If v in (0.1) is even, then a formal application of the Fourier transform leads
to €|~ f(¢) which is the Fourier transform of the Riesz potential (Samko, Kilbas and
Marichev 1993). By choosing different v, this list of examples can be continued. One of
our goals here is to show that all basic operators in fractional calculus, including derivatives
of an integral order, can be represented in the form (0.1). We also give an answer to the
following question: what classes of measures (or distributions) generate concrete types of
fractional integrals and derivatives. The reader will see that these classes are fairly wide,
and therefore new representations are very flexible. In particular, the measure v may be
absolutely continuous with the density supported by an arbitrarily small interval. Such
localization seems to be useful in numerical calculations. Of course, in the case Rea < 0
the measure v must also enjoy some cancellation properties or, in other words, v should be
a “wavelet measure”. That was the reason why representations of the form (0.1) were called
wavelet type representations. Consideration below will be carried out in the framework of

LP-spaces, 1 < p < co on the real line. In this connection the integral (0.1) will be usually

interpreted as the limit

A%f = lim L
e=0 ¢y () J t1=@
p—>00 €

in the LP-norm and in the “almost everywhere”-sense.

We begin our investigation by examining the distribution

o0

14
/tl%adt, a€C
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(see Section 1). This will allow the reader to imagine the whole picture. In Section 2 the
results of Section 1 related to the case of Rea < 0 will be presented in the context of
LP-spaces. We shall specify the classes of distributions v (see Sections 2.2, 2.3) and give
a representation to fractional derivatives, derivatives of an integral order and inverses of
potentials (of the Riesz and the Feller type). The case Rea > 0, when (0.1) represents
various types of fractional integrals, is considered in 3. In Section 4 we give some examples.

The results of this paper were announced by B. Rubin in Proceedings of the Israel

Mathematical Union Conference, Beer Sheva, 1994.

Notation and Preliminaries

As usually Z,N, R and C denote the set of all integers, positive integers, real numbers
and complex numbers respectively; [a] is the integer part of a € R.

The notation C = C(R), L? = LP(R) for function spaces is standard. For the sake of
convenience we sometimes write L instead of Cy = {f € C': |:E1|i£)noo f(z) =0}.

“ A” stands for the Laplacian; (f(z))+ = max{£f(z), 0}. S = S(R) is the Schwartz
space of test functions, S’ is its dual. We denote by ® = ®(R) the Lizorkin space
of test functions. This space consists of Schwartz functions which are orthogonal to all
polynomials; & = ®'(R) denotes the dual of ®. The space ® is dense in L for 1 < p < 0o
(concerning the spaces ®, ®’ see Lizorkin 1969, Samko, Kilbas and Marichev 1993).

For w € ® and f € ®' the expression (f,w) means

(0.3) (f,w) = / f(z)w(@)dz,

where the integral can be interpreted as the value of the distribution f at the test function
w(z). We shall write “f(z) = g(x) in the ®'-sense” if (f,w) = (g9,w) for all w € P.
For g € @', the distributions g~ and g; are defined by

0.4 (570 = (92, w(-2)), (9w) = (9(2), w(tz)), weD, teR.

In the following M denotes the set of all complex-valued finite Borel measures p on the

real line R. For u € M the values u({+oo}) are assumed to be zero.
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For the sake of convenience we use the same notation for an absolutely continuous

measure p and for its density.
(05) (6 = (F(©) = [ e*eaute)

is the Fourier transform of y € M : uV (&) = (F1u)(€).

(0:6) ) @) = po.. [ Hay

is the Hilbert transform of the function ¢. In this notation (Hp)" (&) = ¢(£)sgné (see Neri
1971).

For p € LP, 1 < p < 00, t > 0, we define the convolution with a dilated measure
u € M by

(0.7) (¢ % ue) (@) = / ol — ty)dpu(y).

Obviously ||¢ * pellp < |p|(R)]|¢llp where |x|(R) is the total variation of |u|.

The letter ¢ is used for constants which may assume different values at distinct oc-
currences. We use the symbols “.” and “~" instead of “<” and “=" respectively, if the
relations under consideration hold up to a non-essential constant factor . A denotes the
end of a proof.

The following definitions and auxiliary assertions will be used in the paper.

Definitions 0.1. For w € ®, a € C, the fractional integrals I$w and the fractional

derivatives Dfw are defined by:

(0.8) (Ifw)(2) = [(Fi€) @ (§)]"(z), Rea >0,
(0.9) (Diw)(z) = [(Fi€)*@ ()] (=), Rea >0,
where (:F,L",E)—a — ™ log|a:|3{2(a7ri/2)sgnm.
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Clearly I$w = D{%w, a € C. For Rea > 0 the operators (0.8) and (0.9) have the

following classical representation

0.10)  (I%w) = ﬁ / 19 Yoz — t)dt = %) / 1%Lz T £)dt,
(E1)r o
(n—a) dx"

(0.11) (Diw)(z) = T / t"" o ly(z F t)dt, n = [Rea] + 1

(see Samko, Kilbas and Marichev 1993).

Definition 0.2. For w € &, o € C we define the Riesz potential [*w, the conjugate
Riesz potential I¢w, the Riesz fractional derivative D*w and the conjugate Riesz fractional

derivative DZw by

(I*w)(z) = (|¢]7%@(£))" (z), (Ifw)(z) = (|| *sgné@(£))" (z), Rea > 0,

(0.12)
(Dw)(z) = ([€[*@(€)) (), (Dw)(z) = (I¢|*sgné&w(£))” (z), Rea > 0.

Definition 0.3. For f € ® and « € C, the ®'-distributions I$ f, DS f, I*f,D*f, I¢ f, DX f
are defined by duality as follows:

(0.13) (I%f,w) = (£, T20), (DLf. w)=(£,D2@), (I*fw)=(f,T°%),
(0.14) (D*f,w) = (f,D*®), (I]f,w)=(f,1¢®), (Dgf w)=(f Dew).
We will also consider fractional integrals of finite Borel measures p € M defined by

(0.15) (I§p)(z )% 'du(y), Rea > 0.

8\8

Lemma 0.4 (Rubin 1994). The integrals I$u are absolutely convergent for almost all
x € R if and only if

(0.16) /yﬁaww@<m

ly|>1

respectively.



Lemma 0.5 (Nogin and Rubin 1987). If the functions f(z) € L"(R), 1 < r < oo, and

g(z) € LP(R), 1 < p < oo, coincide in the ®'-sense, then they coincide almost everywhere.

Lemma 0.6. Let u € M, and g(z, z) be an analytic function of z € G C C for py-almost
all z € Q C R. If there is a function go(z) € L'(Q,n) such that |g(z,2)| < go(z) for
pu-almost all x € €2 and all z € G, then the integral

[ 9t 2)duta)

Q

represents an analytic function in G.

The proof of the last statement is similar to that in Gakhov 1977, p. 17.

1. Basic relations involving ®’'-distributions

Given a ®’-distribution v and a complex number «, consider the formal integral

oo
(1.1) A = / tl”_ta dt.
0
Our goal here is to give sense to this integral and to represent (1.1) as a linear combination

of kernels arising in fractional calculus.

For a € C, consider the following kernels (see Gelfand and Shilov 1964, p. 48):

a—1 a—1
LL‘+ r_

(12) (@) = () = oy

(27°T((1 — a)/2)
v I'(a/2)

|x‘a—1’ a7é173757"'7

e = ] log

(=Dt D2 207t e T(e/2)T ((a + 1)/2)

a:173757"';

¢ 270T(1 — a/2)
iV T((a+1)/2)

|z|*"Llog |z|sgn z
\ i/ 2071 (=1)2/2(a 4+ 1) /2)T (a/2)

7

lz|*"sgn , a#2,4,6,---,
(1.4) hg (z) = 4

o =2,4,6--.



Functions (1.2)-(1.4) agree with ®’-distributions for which we use the same notation. These
distributions have the following Fourier transforms in the ®’-sense (see Samko, Kilbas and

Marichev 1993, p. 147, Gelfand and Shilov 1964, p. 170):

(15) (€)= (rie) ™ = e exp (£ TMsgn &), h*(e) = |e[, S (€) = syn ele| ™

Clearly, I$f =hS «f, I®f =h*xf, I¢f =h%«f for all @ € C and f € ®'. The equalities

(1.5) lead to the following relations between fractional integrals:

(1.6) I£f = cos(am)IZ f isin(am)HIZf, IJf=HI*f,
1.7 I°f=HI}f, I$f =cos(an/2)I*f +1i sin(an/2)IZf,
s + s
1 .
(18) 1% = g U I20), af 2k4 1, IS = ()R,
. afp ar  gO 2 I2k:_1k12k.
(1 9) Is f 2 sin(om/?) (I+f I—f)7 « 7é k7 + ( ) f
These relations hold for all « € C and f € @'.
Denote
p
Ag,’;’:/tly%adt, 0<e<p<oo.

Lemma 1.1. Let o € C, v be a ®'-distribution such that 7(§) € Lioc(R \ {0}). Denote

(6 4
vi(§) = M and let the integrals

(1.10) ai=/ﬁi(n)dn

exist as the improper ones. Then A2} — ayh® +a_hy as e —0,p =00 in

the ®'-sense. If « ¢ 7 , then this limit is also equal to cyhS + c_h® , where
cy =1 [a+/cos(%) + a_/sin(%)].

Proof Forwe€ ® we have
P

(a2.0) = L [0000D, 1 / (72 18).0(6)) 4, | 1 / (29,20, _

" pl€l
1 / A_
=g (67 [ @) + o (s [ i)
elel A



Since the integrals (1.10) are finite, we obtain :

(@) N A
lim (A2, w) = ZE(0(€),0(9)) + 5= (B2 (€),8(6)) = at (h",w) + - (h,w).
p—00

The second statement is an obvious consequence of the following relations (see the

first relation in (1.5)): fzj‘_ + h® = 2h* cos o, iAL‘_’f_ — h® = 2h%sin o A
Remark 1.2. If « is an integer, then one can also write

(<I>,) k 2k

lim AZY = (=1)"(aq +a_H)hY, a=2k, k€,
e—0 ’

p—r00

(@)
lim A2y = i(=1)** (a4 H + a_ )W =i(-1)*(apH + a_ )b, a=2k+1, keZ,
e— ’

p—>00

where H stands for the Hilbert transform (0.6).

These equalities can be easily derived from the following relations in the Fourier terms:
W) = (=DFREFE), B = (~1)FREE(E)sgn €,
W) = i(— DRI (€)sgn € = i(-1)* R (€)sgn &,
BFH(E) = i(—1)FFHRIF (€) = i(—1)" A2 ().

Lemma 1.1 shows that the integral [° (¢ * v4)(z) dt/t*~* may be used for represen-

tation of the following operators:

(a) Riesz potentials and their inverses (a; = 1,a_ = 0);
(b) conjugate Riesz potentials and their inverses (a4 = 0,a_ = 1);
(¢) left-sided fractional integrals and derivatives (cy = 1,c_ = 0);

(d) right-sided fractional integrals and derivatives (cy = 0,c_ = 1);
(e) integrals and derivatives of an integral order (the related formulae for coefficients

are obvious from (1.8), (1.9)).



In a similar way one can represent compositions of mentioned operators with a Hilbert

transform and linear combinations (with constant coefficients) of such operators.

2. Wavelet Type Representation of Fractional Derivatives (LP-theory)

In this section we obtain natural LP-analogues of Lemma 1.1 and describe some classes
of measures v for which these analogues hold. The main results are presented in Theorems
2.8, 2.11.

For convenience of the reader we first sketch the basic steps of our program without

going into details. Given a suitable measure v and a test function w € ®, we find a kernel

k(z) for which

I/’
/ tf+a = (ke,¥), Rea >0,

1
where k. (z) = —k(f) and ¢ = D%w is the right-sided Liouville fractional derivative. We
€ '€

will see that k(z) = (1/x) f,u )dy with p = I¢v € L.

Put k = kT + k—, where k*(z) = (1/2z) [[u(y) £ p(—y)]dy. The kernel k* turns
0
out to be summable and £~ (x) has a “bad” behaviour at infinity. We correct k= (x) by

putting £~ (z) = h(z) — Awig(x) with a suitable coefficient A and the conjugate Poisson
1 =z
i1+ 22
As a result we get

kernel ¢(z) = . A new function h(z) will then be summable and [*°_h(z)dz = 0.

o0

[t = @), 4 = (0) + (hes) — rilae, )

€

This formula enables us to obtain relevant relations for LP-functions. Then one can
apply usual tools of approximation to the identity and the well-known fact that the Hilbert
transform can be approximated by conjugate Poisson integrals (Neri 1971).

If v is a distribution, certain modifications of this scheme should be used (see Section

2.4).
2.1. Auxiliary relations.
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Lemma 2.1. Let Rea > 0, v be a finite Borel measure such that

a—1 ifaéeN,

[Rea] otherwise.

(2.1) /a:jdy( )=0Vj=0,1,---,m; m= {

— 00

(i) If Rea ¢ N or « is an integer, then I$v € L' provided

(2.2) / lz|Re%d|v|(z) < 0o

|z|>1

(ii) If Rea € N, Ima # 0, then I¢v € L' provided

-1 00
(2.3) / lz|Reed|v|(z) < oo, /Q:Re"‘loga: dlv|(z) < oo,
o 1

and I®v € L' provided

-1 o0
(2.3") / |z| B¢ log |z| d|v|(z) < oo, /xReo‘d|V\(:E) < 00.
oo 1

Proof Consider Ifv. We show separately that I{v € L'(—o0,1) and Ity €

L'(1,00). Put o/ = Rea. The first relation is obvious:

/|(Ia 2)|dz /d|y| /lzc— O‘_ldm——,/(l—y 'dv|(y) <

— 00

In order to prove the second relation one can use the Taylor expansion:

)
_ m o 1—j 1 m+1
(SC Z y + ( / t)a m— 2dt
0

= j! T(a—j) mlN(a—m+1)

with m defined in (2.1), (in the case o € N the integral in the right-hand side disappears).

11



In accordance with (2.1) we have:

/IIﬁy) \da:<z e _H/
+7O‘m!r(aim_1)/d” /y —t)"(z t)am2dt‘dx

au/de i

zm:joxa - —de/yﬂd\u|(y) +7oda: /0 d|v|(y) 7|(\y\ — )™ (z + ) T2+

7=0 z
00 Y

—|—/d:1:/d|1/| / — )™ (z — t)* ™ 2dL.
1 0

By changing the order of integration one can easily get

1

(2.4) / ) @)lde . S / J — 1)dlv|(y) + / u(y)dly|(y) + / o()dv|(®),

Jj=07 0
where

lyl

u(y) = /(|y\ — )™ (1+6)* "™ 1dt, v(y) = /(y — )™ (1 — £)* ™14y,

The first term in (2.4) is finite. This completes the proof for the case a € N. If Rea ¢ N,
then

u(y) < |ly|™ o' —m=1gp ~ |y|°".

o\g

If Reaw € N, Ima # 0 (in this case o/ — m = 0), then

ly] 1

/ =ty / = e <l / =y log(1 + [y)).
0

T+ m
Thus by (2.2), (2.3) the second term in (2.4) is finite. The finiteness of the third one is

implied by the simple estimate

Y

v(y) < /(1 — ) 1<oo fory<l.
0

For I?v the result can be deduced from that for I¢v by changing variables. A
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Lemma 2.2. Let Rea > 0 and v satisfy the conditions of Lemma 2.1. If w € & and

W = D%, then

(2.5) / Yo — (kF0) + (7.0, 0<e<oo,

(26) K@) = 5 (1) () — (IF0)(~)],

@1 (@) = I + ()0 - 2, A= jres [ lald(a),

—0Q
Proof ByLemma 2.1, u = I¢v € L' and therefore v = D¢y in the ®-sense. It
H + +

follows that

oo

Vta t _ (lj't ¢
tl—}—a -
€

= f@dw

where k(x) = %/,u(y)dy. Put p=pt +p, pt(z) = [u(r) + u(—z)]/2 and define

pw(y)dy, z <0

—_—A—
8 |= 8] =

x

z/e

[ wy)dy, = >0

O0 } = (keﬂﬁ),
J

/e

x

(28) K@) = 1 [ )y / £0)) + (1) ().

0 0

Note that k*(z) is an even function and £~ (z) is an odd one.
By (2.2), the fractional integral (I_1|_+Rea\1/|)(a:) exists for almost all z (cf. Lemma

0.4), and therefore one can change the order of integration in (2.8). For z > 0 we have

K@) = —— dy[ (y — 1) 'dv(t) + (—y—t)a_ldz/(t)] -
' (a)x ) .

—0Q0

0 T

= s | [ e =07 = v + [@=nran) / (617 = (2 — 6)]dv(t)+

/m du(t m[ / (& — t)%dv(t) — /(—x —1) dy(t)].
This coincides with (2.6). The proof of (2.7) is similar. A
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Lemma 2.3. Let Rea>0,v € M. If

(2.9) / ridv(z) =0Vj=0,1,---,[Req], / z|Pd|v|(z) < oo for some 8 > Rea,
—00 |z|>1

then for sufficiently small €1,e5 > 0 the following estimates are valid:
1
(2.10) ‘—(I}f"y) (x)‘ Jz)m7Y jz)>1 and  RE(@)]. |z, |z < 1.
x
The proof of this lemma is technical and given in Appendix 1. Now from (2.7) and

A
the first inequality in (2.10) we see that £~ is not summable because of the term —. We
x

make a correction of £~ by considering another kernel:

(2.11) h(z) = k= (z) + Awig(z), q(z) =

( ¢(z) is the conjugate Poisson kernel).

Lemma 2.4. Let o and v be the same as in Lemma 2.3. Then

oo

(212)  hell, / h@)ds =0,  |h(z)]. {

— 00

|7 2l <1

€1,€9 > 0.
i S T

P r o o f. The behaviour of h(x) for |z| < 1 is obvious from (2.10), (2.11) by taking

into account that

A , A _3
(2.13) — + Amig(z) = “o( 27 = 0(|z|™°).

The integral of h is zero because h is odd. A

Lemma 2.5. Let Rea > 0 and v satisfy the conditions of Lemma 2.3. Then for
we®P, =D, g=kT + h— Aniq, the following relation holds:

(2.14) / (t”f;‘;’)dt —

It follows that

. x (Vta LU) .’17_1__(1_1 l_;a—l
2.15 1 dt = (7 ) _< H )
(2.15) 13%/ o e \vay ) Ty v

14




where H stands for the Hilbert transform,

- / z%dv(x) + cosam / |z|“dv(z )}, a ¢ N,

(2.16) s = / i (2)dz = 4 o
_ —1)¢ 1
° ( g!) / ztlog mdl/(m), a=/{€eN,
\ RS
T

2.1 = — g 0T a
(2.17) 07 A mi T+ a) / |z|*dv(z)

P roof. The relation (2.14) follows from (2.5), (2.11). By taking into account Lemma
2.3, 2.4, we obtain

m—a—l

lim (K, ) = 744(0) = 711 (8,%) = 74 (D30, w) = 7+ (ﬁ, w), lim(he, ) =0,

e ) = Bty g (e~ o0m 660) = (g 1)

It remains to verify the second relations in (2.16). We refer the reader to Appendix 3 for

these calculations. A

The equality (2.15) will lead us to the wavelet type representation of the operator
v+DE +v—HDS (see Section 2.2). In order to obtain similar representations for linear
combinations like ¢y D% 4+ c_D® or a4y D* + a_Dg, (with Riesz derivatives) we rewrite the

right-hand side of (2.14) in suitable form.

Lemma 2.6. Let a,v,\,w(xz) and h(x) be the same as in Lemma 2.5.

(i) If « ¢ N, then

Vg, w a - a a
(2.18) (tf+a)dt = (uf, D2@) + (u7, DI@) + (he, D2W),
where
ut(z) = kT (z) + MP(z)cot(ar), P(z)= % (the Poisson kernel),
(2.18) (1 + 22?)
| u (@) =~ ()
~ sin(an) v

15



It follows that

o0
) (v,w) , J:J_ra_l z= !
(2.19) gl_I)I(l)/ o dt—c+(r(_a),w) +c_(F(_a),w)7
where
00 0
2.20 cy =T (—a) | z%dv(x), c_ =T(—«a z|%dv(z).
+
0 —00
(ii) For any Re «a > 0,
(2.21) / (t”f;‘;’) dt = (vF,D%) + (v;, Dgw) + (he, D%w),
where
vt = cos %Iﬁ(az) — Amsin %P(az), v = —isin %lﬁ(x) — AT i cos %"P(w).
It follows that
[ w) i "
(2.22) 213%/ th dt = ay(h™% w) 4+ a_(hg®,w),

€

where distributions h=%, h;* (of the Riesz type) are defined by (1.3), (1.4) and the

coefficients a4+ can be calculated as follows.

For oo ¢ N:
2.23) ay=T(—«a cos 28 z|%dv(xz), a_ = —il'(—a sin X z|%sgnz dv(z).
* 2 2
— 00 — 00
For a = ¢ € N:
-1 £/2 oo 1
( Z? 1l welogmdl/(w),6:2k,k:1,2,---,
(2.24) ay = N

—1)(&-1)/2 0
% [ ztdv(z), £=2k+1,k=0,1,2,---;

— 00

16



S 1\E/2+1 0
i(—1) m [ #ldv(z), £=2kk=1,2,---,

2.24' ! e
(2.24) a- = i(—1)e-D/2 oo 1
R rtlog —dv(z), £L=2k+1,k=0,1,2,---,

4 “oo ||

P roof. (i) The equality (2.18) is a consequence of (2.14) and the relation:
t D¢
(2.25) Dew = H(HDw) = H(C O™ pa, DI\ o,
i isin(am)

which follows from (1.7).

By taking into account Lemmas 2.3, 2.4, 2.5, we obtain

—a—1
lim(ul, D%@) = (v4 + A cot(onr))(xjL ,w) with v4 as in (2.16),
e—0 F(—a)
S Y
R _
ell—I>I(1)(h6’D w) =0, ell—r>r(l)(u5 Diw) = sin(a) (F(—a)’w)'
Thus we have (2.19) with
0o 0
+awcot(am) = T(-a) [ s*dv(o), T =T(0) [ faldv(z)
cy = cot(a v(z =— =I(—a z|%dv(z).
TR TAT ) sin(a)
0 —00
(ii) The relation (2.21) follows from (2.14) because
(2.26) D = cos %Daw +isin ?HD%} (see (1.6), (1.9)).

As above we have

. + Pa) — ﬂ _ . Of_ﬂ' —a
;I_I)I(I)(UE,D w) = (cos 5 T+ AT sin 5 (™%, w),

lim (he, D2@) = 0, lim (v7, HD?@) = —i(sin ;. + At cos —)(h5®, w).
e—0 e—0 2 2

Thus we have (2.22) with a4 = cos %’)q_ — A sin a_27r7 a_ = —i ( sin a—27rfy+ + A cos %)
By (2.16), (2.17) these coefficients can be transformed into those in (2.23)-(2.24). A

2.2. The main theorem.

Now we are ready to present the main result for the integrals

o0

v x f
/ Tta dt, Rea > 0.

0

Below we use the function k¥ (x), h(z), ¢(x) and the constants X, 7y, ct, a4 defined in the

preceding section.
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Lemma 2.7. Let f € ®', a € C. If one of the distributions I f, I¢f, I*f, I¢f belongs

to LP, 1 < p < oo, then all the rest also belong to LP and their LP-norms are equivalent.

This statement is obvious from (1.6)-(1.9) by taking into account the boundedness of

the Hilbert transform H in L? for 1 < p < oc.

Theorem 2.8. Let Rea > 0, v € M. Assume that

o0
(2.27) / dv(z) =0 for j=0,1,---,[Req], / z|Pd|v|(x) < oo

—0o |z|>1
for some 3 > Rea. Let f € L™, 1 <r < oo, and one of the derivatives D% f, D*f, D$ f
(in the ®'-sense) belongs to LP, 1 < p < co. Then the limit

oo

(2.28) A°f = lim / t1+(f dt

€

exists in the LP-norm and in the a.e. sense, and the following relations hold:
(2.29) A°f =y DYf+v-HDYf =ciDYf +c_D2f =a D*f +a_Dj f.

(in the second equality it is assumed o ¢ N).

Proof. By (1.6)-(1.7) the expressions in (2.29) coincide in the ®’-sense. By Lemmas
2.6, 0.5 they also coincide almost everywhere. Thus, it suffices to verify the first equality
n (2.29). Take w € ® and denote wy(y) = w(z + y), ¥:(y) = (D%@,)(y) = (D2@)(x + y).
Then by (2.14),

14 awa: . _
(2.29) / 090 = (geribs), 9= K* b= wig, gu(z) = < g(a/e).
This gives
14 *f V. ’wm . —
ea ([ Hiia, / 2%) 1y) = (f(a). e 02)) = (g = £.D7E).

€

Given an arbitrary function a(z) € L®, 1 < s < 0o, the expression

(2.31) (ae * f, ), where ¢ = D%w,
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can be transformed into (a. *D$ f, w). Indeed, for any sequence {a,(z)} € C§° converging

to a(x) in the L*-norm we have

(0 £, %) = I ((@m)e* £) = Tim (£, (am)e + ).
where a_ () = @y (—2x). Since a,, is a multiplier in ®, then
(a)e * 9 = (a)e * D@ = D*[(a,,) * w] € P,

and by taking into account that D¢ f € LP, we obtain

(ac+ f, 9) = lim (£, D%[(am)e +)) = lm (D2, (am)e @) =

= lim ((am)e * DL f, w) = (ac * DL, w).

m—0o0

The expression (2.30) is a linear combination of those of the form (2.31), because

kt € L', he L', g € L® Vs > 1. It follows that

o0
vk f o
(2.31") (/ ;Ha dt, w) = (ge * DS f, w).
By Lemma 0.5 this yields a pointwise equality
o0
(2.32) / ’; tli f dt = (kI + he — Amig.) * DS f

€

which implies the first equality in (2.29) owing to the standard machinery of approxima-
tion to the identity (here Lemmas 2.3, 2.4 are important) and the limit properties of the
conjugate Poisson integrals (see Neri 1971). A

2.3. The case of purely imaginary order.
We need some preliminaries which represent an extension of Lemmas 2.3, 2.4, 2.5 to

the case Rea = 0.

Lemma 2.9. Let v € M, Rea = 0. If

(2.33) J(R) = 0, / w[Pdjy|(z) < oo, / [ ~3d|v|(z) < oo
|z|>1 |z|<1

for some 3 > 0 and 6 € (0,1), then for sufficiently small 1,5 > 0,

1

T

In particular, k*(x) € L' and h(x) € L.

(2.34) [=(ITv)(2)| . x|~ for |z| > 1, and [k*(z)|. |z for |z| < 1.

The proof of this lemma is technical and given in Appendix 2.
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Lemma 2.10. Let v satisfy (2.33) with some § € (0,1) , 8> 0 and let w € ®. Then
(i) The relation

p
(2.35) / (t”f;‘;’)dt = (g, ) — (gpnt), g=kT+h—Amig=kt +k~, =D,

€

previously proved for Re o > 0 (see Lemma 2.5), holds for —0 < Rea < 0 with the same
d as in (2.33).
(ii) The relation (2.17) is true for Re o = 0 with coefficients

I‘(—a)[:foa:ady(a:) + cos(am) _fO |z|*dv(z), a # 0,

(2.36) Vi =

o0 1
[ log mdu(a:), a=0;

(2.36') v = —m”iia) / [ (z).

P r o o f. We recall the expressions of kT, k~:

(2.37) kT (z) = (22) (I ) (2) — (1) ()],
— -1 1+« 1+« 1 i
(2.38) k™ (2) = (22) (L) () + (I1Tv)(—2) — 2)], A= T +a) / |z|“dv(z).

In order to prove (2.35), we extend (2.14) to —6 < Rea < 0 by using analytic
continuation. By Lemma 0.6 the left-hand side of (2.35) can be regarded as entire function
of a. Let us show that the right-hand side of (2.35) is an analytic function in the strip
{a € C:—§ < Rea < By} for some By > 0. For arbitrary fixed N > 0 put

Msgn={a€C: -0 < Rea<f, |[Ima| <N},
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and let ¢ = ¢(6, 8, N) be a constant which can be different in each occasion. According to
(2.35) we have to examine the expressions (kT,), (k~,) from the point of view of their

analyticity in the a-variable. Consider the first one. Since k™ (x) is even, then by (2.37),

g — [ @) — ) ()

[(P2w)(z) + (DZw)(—x)]dz =

2z
~ [Re@[ [le=0)" = (o= liv) + [ = dvw)] T =1+ I
Ro(a) = 52575 (P29)(@) + (D20)(=a)]

For I; we have

0 1
d
I - / | du(y) / Ra(ylO)[(€+1)* — (1 —5)“]5.
—00 0
Note that
(2.39) (1+2%)|Ra(x)] <c for a € Msg N-

Indeed, since w € @, then clearly,
1+ 2*)R |~|/ e ([ — A)Ral(€)de] | /|s|a|¢1 &)|de < ¢ = ¢(5, B, N)

(here 1 is a certain continuous function rapidly decreasing at the origin and at infinity).

By (2.39), |Ra(|y|&)| - ¢ for & € Ms g n. Furthermore,

‘(£+1)°‘—(1—£)a
3

¢
_%/(1+t"‘_1 (1—t)a'—1}dt‘§
0

a & 51 56_1
= dt < c(l + 7)
<% Jox ) i-o
0
By Lemma 0.6 it follows that the inner integral in I; represents an analytic function of

(RS M5”37N and

=%, |yl <1,

y|®
ylP, ly| > 1.

[ Rawiole+ 1 - -1 < elyl” < {
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This implies the analyticity of I; = I1(«) for o € Mg n.

In order to prove the analyticity of Iy = Is(a) one needs more refined estimates. We

have
o0 0 0 0
Ra(y§) (£ — 1) Ra(lylE) (€ + 1)
Iy = [ y*dv(y €+ [ |y|*dv(y) d¢ = Ay + Aa.
oo [P o [
By (2.39),
(2.40) 12|°|Ra(z)| < c=¢(d,B,N,0), 0<6<2.

Consider A;. Take an arbitrary o € (0,9) and fix By € (0, min{d — §p; S}). Then for
€ ((Bo+9d—190)/2, § —dp) and o = Reax € (—0dy, Bo) by (2.40) we have

(-1 =D _ ¢ {(5—1)—50 1<e<2,

Ra(y€) ¢ =€ yogite = 46 (€ —1)Pog=1=(Bo+0=00)/2 ¢=1=(0=00—F0)/2 ¢ > 9

Owing to Lemma 0.6 this implies the analyticity of the inner integral [ for o € M, g,.n
In order to apply Lemma 0.6 again, we note that for o and 6 satisfying the above restric-

tions,

o [ BaWOE=D" | (ot {—6, y<t,
2/1/ ¢ ¢l . Cy <C ¥ Y1

By (2.33) it follows that A; is an analytic function of @ in the domain —dy < Rea < Sy

which can be arbitrarily close to the line Re o = —§ and contains the imaginary axis. The
same holds for Ay. Thus, one can resume that a — (k™) is an analytic function in the
strip —dp < Rea < fy, that can be chosen arbitrarily close to the line Rea = —4§ and

contains the axis Rea = 0. By the same reasoning this is also true for (k~, ) which has

the form
< 1+a 1+ay —r) —
0 = [ LG D2 o) - (o))l -
= [No@)] / (@~ y)du(y) - 2 / @]+ [N [ L+ ) - v+
+ [ Na) / (] = )" = yIvly). Nola) = Gy [P 9)(e) = (D@) (o))
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Now we can conclude, that once (2.35) holds in the right neighborhood of the imaginary
axis (see Lemma 2.5), then, by analyticity, (2.35) also holds for —§ < Rea < 0.

The proof of (2.15) in the case Re a = 0 is similar to that in Lemma 2.5 and based on
Lemma 2.9 (the reader can easily check by using the Parseval inequality that (k,v) — 0,
(hp,) = 0,  (gp,%) = 0 as p — oo0). The relations (2.36), (2.36") are established in
Appendix 3. A

Now we are ready to prove an analogue of Theorem 2.8 for the case Rea = 0.
First we have to define the expressions D f,D*f,Def for Rea = 0, f € LP. Opera-
tors D¢, D, DY are well determined by (0.9), (0.12) on functions belonging to ®. On
LP-functions, 1 < p < oo, they are understood as the linear bounded (from L? to LP)

multiplier operators extended from the dense subset ®.

Theorem 2.11. Let Rea = 0,v € M. Assume that

(2.41) V(R) =0, / 1Pd|v|(z) < oo, / [ ~3dlv|(z) < oo

lz|>1 lz|<1

for some 3 >0 ,6 € (0,1), and let f € LP, 1 < p < o©.
Then the limit

p

ar__ 1 v x f
(2.42) A%f=1lim [t
P g

exists in the LP-norm and in the a.e. sense, and the following relations hold:
(2.43) Af =y DYf+v_HD{f=c.D{f+c_D2f =a D*f +a_Dg f.

(in the second equality it is assumed o # 0). Here 4 are defined by (2.36), (2.36'), c+
have the form (2.20) and a4 may be evaluated by the following formulae:

P(—a)cos & [ |z|*dv(z), a#0
(2.44) =1 o -
J log mdy(x), a=0.

23



—iT'(—c) sin &F f |z|%sgnx dv(z), a#0
(2.44") a_ = ,
o P
5 [ sgnz dv(z), a=0.

P ro o f. Asin the proof of Theorem 2.8, from (2.35) we get

p

(2.45) / yttHafdt—ge*D:ﬁf go*xDLf, g= kT + h — Amig.

€

We prove the first relation in (2.43). Using Lemmas 2.9, 2.10, one can apply well-
known results on approximation to the identity (Stein 1970, Neri 1971) and related prop-
erties of the conjugate Poisson kernel (Neri 1971). This gives

(2.46) kX« DLf =44 DLf,  hexDLf =0, q.xDYf— HDSf

as € — 0 in the LP-norm and in the a.e. sense. Furthermore, since k*, h € L', then

k"‘*D?‘I_f L 0, h, *x DY f L8 0 as p — oo (see, e.g., Samko 1984, p. 22). In order to

prove that lim ||g, * DS f|l, = 0 we take the sequence of compactly supported smooth
p—00

functions w,, such that lim |DS f — wmllp = 0, and make use of the uniform estimate

DS f * gpllp < Cpl| DY f||,, (See Neri 1971). Then

IDLS * apllp < IDLS = wm) * dpllp + lm * Gollp < ColDLS = winllp + o7 wmllnllgly

and the desired LP-convergence follows.
Let us prove that g, * D¢ f — 0 almost everywhere as p — oo. Put ¢ = D¢ f and

write g(t) in the form:
o) = 1000 = 5 = s ([ wra)+ [+ 1) = ) -
=UNt) + U%(1).

We have to show that  lim (U} % ¢)(z) = 0  where Ui(t) = p~'U'(t/p); i = 1,2.

p—>00

For any 0 € (0,1) we have

|thWMS(;+/+7+/)wm—mumma=
0 0

= N (%, p) + Ny (2, p) + M (x, p) + My (2, p), i =1,2.
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0

If p>1 ,then Ngl(x,p)./ 0@ — HlwBdt, w(t) =
0
By (2.41), w € L'*(0,1) and

1

II/Iw(w—t)lw(t)dtllp < IIwIIp/w(t)dt < 0.

0
It means that the function ¢ — [p(z — t)|w(t) belongs to L(0,1) for almost all z and
Na‘f 1(z, p) becomes arbitrarily small for all sufficiently small < #;(z) uniformly in p > 1.
The same is true for Ny, (z,p). Fix 0 = 6:1(z) and consider Mg‘t’l(x,p). By Hélder’s

inequality,
(e.e) (oo
—t I 1/pl
/Mdt < ||<,o||p(/t—1’ dt) < oo,
91 91

i.e. the function t — |p(x — t)|/t belongs to L'(#;,00) for all x. Since for t > 6,
U3 ()] =t v[((0,t/p)) < 07" |v|(R), then by the Lebesgue dominated convergence theo-

rem

t
lim M0+ 1(z, p) / |<p($ lim |v|((0, ;))dt =0.

p—00 pP—00

The same is true for My ,(z, p). Consider NQ‘B (z,p). Let 0 < & < 0 with the same § as in
(2.41). Then for p > 1,

0 t/p t
i) =7 [ avw [+ ag] 5 /|y| “dvl(y) [ € tdg =
— 00 0 0

Hence as above, N; , can be made arbitrarily small for sufficiently small § < 6(z) uni-

formly with respect to p > 1. The same is true for Ny,. Now fix f and consider

-t
Mg ,(z, p). Since t — lelz =1)| is a summable function on [f3, co) for all z, then
: t
p(z a
lim My, (. ) / =gt tim / L) = [ylo) div(y) =
pP—00

The same is true for My, ,. This completes the proof of (2.42) and the first equality in
(2.43) in the a.e. sense. By (1.6)-(1.7) the expressions in (2.43) coincide in ®’-sense. By

Lemmas 2.6, 2.7, 0.5 these three expressions also coincide almost everywhere. A

25



2.4. Some generalizations.
Let us obtain some analogues of Theorems 2.8, 2.11 in the case when Re o > 1 and v

belongs to a certain class of ®'-distributions which satisfies the following conditions.

@I
Condition 2.12. Ifa=£+ag, LEN, 0< Re ap <1, thenvy = I%v is a finite Borel
measure (i.e. v € M) such that

vo(R) =0, f|w|>0 \z|Bd|vo|(z) < oo for some B> Re ay.

If Re oy =0, we assume additionally, that fl$|<1 lz|~%d|vo|(x) < 0o for some § € (0,1).
An example of the “Gelfand-Shilov distribution”. Let Re «g # 0,

5(3)

L
(2.47) v(z) =06(zx—1) Z

il
J=0 o

d(z) being the Dirac d-function. For w € ® we have

14
5(3) ()], w) = Z

7=0

L

o -1n-3 &

Jj=0

j!

where

(@D K (-1 (e
”“_Tﬁ_; jre-j a0

Clearly, supp vy = [0,1] and vy € M. Moreover, vo(R) = 9(0) = 0 because

in(e) = (-ig) [ - 3 W] - ey O

7=0
Thus, v satisfies Condition 2.12. Note that for f € &,

e .
vk f o0 (—t)? . dt
/0 tt1+a dt:/o [f(:v—t) —jz::O i f(J)(x)] ra

This coincides with the Gelfand-Shilov regularization of the divergent integral
Joot7 1 f(z — t)dt (cf. Gelfand and Shilov 1964, p. 48).
Theorem 2.13. Let o = £+ g, £ € N, Re «ag € [0,1). Assume that v satisfies

7!
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Condition 2.12. For f € ®' let one of the derivatives D f, D*f, D2f (in the ®'-sense)
belong to L, 1 <p < oco. If Re a ¢ N, then the integral [° (v * f)(z)dt/t'TY coincides

(in the ®'-sense) with the LP-function that tends in the LP-norm and in the a.e. sense to
Y+ DSf+v-HDSf =cy DS f+c-D2f =ayDf +a_Dg f.

Here the coefficients v+, c+, a4 are defined by equalities (2.36),(2.36'),(2.20) and
(2.44),(2.44') in which « and v must be replaced by oy and vy = Iﬁ_y respectively. If
Re « € N, then the above statement is valid for the integral [£(v, * f)(z)dt/t** with
e—=0, p— oc.

Proof Forw € @ denote wy(z) = (—d/dz)’w(z), we(y) = w(x +y), v(y) =
(0™ (@0)2) ). Then

([ )= (s [ eaitu) = (s [ il

= (f(CU), (g€a¢w)) = (95 * f7 DEYO(DO) = (98 * fa%) - (96 *Dg,w)

(cf. the proof of Theorem 2.8). Here g = k™ + h — Amig is the same as in (2.29") but with
v replaced by vy and « replaced by «ag. The rest of the proof is the same as in Theorem
2.8. In the case Re ap = 0 (i.e. Re a € N) the argument is similar: one should replace

the upper limit co by p and make use of the argument in the proof of Theorem 2.11. A

3. Wavelet type representation of fractional integrals.

In this section we are concerned with integrals which have the form
I*(w, @) = [7(p * ve)(x) dt/t'™*, Rea>0. As we have seen in Section 2, such inte-
grals, with « replaced by —a, represent various fractional derivatives and can serve as
solutions to the corresponding integral equations of the first kind. In accordance with
this, the operators I*(v, f), Re a > 0, represent fractional integrals (and their linear
combinations) and can be regarded as solutions to the corresponding differential or, more
generally, pseudo-differential equations.

Given a ®’-distribution f that agrees with a certain locally integrable function, we
shall denote the latter by [f]s. In the following it is convenient to discriminate between

the cases Re o« € N and Re a ¢ N. In order to make the basic idea clearer we shall not
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formulate the results in the most general form and leave possible generalizations to the
interested reader.

Theorem 3.1 Let « =4+ g, £ € Zy,0< Reag <1, Re a> 0, and let v be an
integrable function with a generalized derivative (in the ®'-sense) vy = (d/dx)*v belonging

to M and such that
_ I} -0
vo(R) =0, |z|Pd|vg| < oo, lz|~%d|vp| < o0,
|z|>1 |z|<1

for some 3,6 > 0. Assume that for ¢ € LP, 1 < p < 00, one of the ®'-distributions I,
I%p, I&¢ agrees with a certain L"-function, 1 < r < oo (then the same is true for all the

rest). Then

. P @ * Vg ~ QY ~ «
(3.1) Jim [ dt = ele +3-HIIT¢le =
p —roo €
(32) = [I%¢le + - [1%]e (a ¢N)
(3-3) =a+[I%)]e +a_[Id¢)e

(the limit being understood in the L™ -norm and in the a.e.-sense) where

0

T I'(a) { /0 5% du () + cos(ar) /_ i

+ — oo 1
/ log —dvy(x), ap =0,

—oo |7l

x_aodyo(w)] , ap#0,

(35) 7. =—— "™ / [~ (x);

== _F(l - CM()) — 0o

(3.6) & =(ao) /0 T Wdn(x), = (—1)T(ap) /_ 15[~ dyg (2);
(3.7) a+ = (C4 + ¢-) cos(an/2), a_ =1i(¢cy —c_)sin(ar/2), «a &N,

& 1
(—l)k/ log mduo, a =2k,
(3.8) iy = B
(—1)k_17r/ dvyo, a=2k—-1, keN,

— 00
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0
(—1)k+1m'/ dv, a = 2k,
(3.9) a_ = —o°

o0
(—l)k_lz’/ log idVo, a=2k—1, keN.

—eo |7

Proof Forw € @, denote wy(y) = w(z +vy), wo=I'w, ¥(y) = (I*(00)s)(y) =
(I%°wg)(z + y). Then, by making use of (2.35), we have

(/Ep f:’;fdt, w) = (cp(:c),/: (Vt’(_;)_egyw((f))z)dt)
- ((p(a:), /c_ ’ w&) = (¢(2); (9¢ — 9p, %))

= ((9e — gp) * ¥, IEMO‘DO) = ((9e — 9p) * @,IQ‘—Q) = ((9e — gp) * [IfSD]@aw)

(cf. the proofs of Theorems 2.8, 2.11). Here g = k+ + h — Amig is the same function as in
(2.35) but with o and v replaced by —a and vy respectively. By Lemma 0.5 this leads to

the pointwise equality

Py, x
(3.10) / ti_(fdt= (9 — 9p) * 1T ¢]s.
g

As in the proof of Theorem 2.11, the right-hand side of (3.10) tends (in the required sense)
to Y4 [I¢¢le +7-H[I$¢ple with 74 defined by (3.4), (3.5). The relations (3.2), (3.3) follow
from (3.1) by (1.6)-(1.9). A

Consider the case Re « ¢ N.
Lemma 3.2. Leta =£L+ag, L €Zy, 0< Re ag < 1. Assume that v is a ®'-distribution

such that vg = (d/dx)*v is a measure. Put

kE(z) = (£1) )z (I “Pwo)(z) if +z>0 and k¥(z)=0 if +z<0.

If
(3.11) / [~ o d|yel(z) < oo,
then k* € L', and for any w € ®,
P (v, w) _ (1t + 700 kX — k. I%
(3.12) i tl_adt_(kg—kp,f_w)Jr(g— 5 +w>.
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If ¢e—>0, p—0, then

tl— [0

p
(3.13) / () s 6 b + 6 b2, e = (+£1)T(a) /m 2~ (z).
19

Proof Letfirst 0 < Rea<l1,ie £=0, ag=c0a, vy=r. The relations k* € L!
and [ k* = ¢4 follow easily from (3.11) by changing the order of integration. Then (3.13)
is implied by (3.12). In order to prove (3.12) we have

/ (t1t— a)dt:/ x adV(:C)/ 1(_Zydy+/ |z| adl/(x)/ E_ a)dy
€ 0 ex Y —oo elz| Y
= AE - Ap,

o [ [T508 [ i [

ox —o Y

o,

o = ¢, p. If we replace z=%y*"! and |z|~%|y|%"! according to the formula

« b
- X—1 __ 0— -1 B _a@
o= T(a)T(1 - a) /Ua(b )= (t — oa) o 0,0>0.

(see Gradshteyn and Ryzhik 1980 , formula 3.228(2)), then simple calculations will lead
to (3.12). If £ > 1, then

/p (v, ) /p (v, (=d/dz)*I* w) /p ()¢, I w)
dt = dt = "l

-« -« t1— Qo

o}

= (kf =k}, 12T w) + (kz — kp, IT°T  w),  k*(z) = (£1)'4* (2).

Since I w = (—1)Tf w the result then follows. A

Theorem 3.3. Let o« = ¢+ gy, £ € Z4, 0 < Re ap < 1. Assume that v is a finite
measure such that vy = (d/dz)*v (the derivative is understood in the ® -sense) is a measure
satisfying (3.11). Let ¢ € LP, 1<p < o0, and suppose that one of the ®'-distributions

S, 1%, I3 agrees with a certain L"-function, 1 < r < co. Then

p‘P*Vt

tl_ (0]

(3.14) lim

p—0 Jq

dt = e+ [I%¢le + c_[I%0)e = ar[I%]o + a_[IS ¢)o,
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where the limit is interpreted in the L"-norm and the coefficients ¢+, a4 are defined by
(3.6), (3.7).

P roof Asin Theorem 3.1, it suffices to establish the first relation. Let w € ®,
wz(y) = w(z + y). Then

where, according to (3.12),

= lim_ [(kg — k5, 1%,) + (ks — k), I%0,)

=&, (I1%0)(z) + e (I@) () — (k, I%,) — (k, I%0,).

Thus,

Poxu S TQ 5 QU + . 7O e
/0 tl_adt,w = CIfo+cIZp—ky x I 0 — ky * I 7o, w).

By Lemma 0.5,

p
@ * V, . _
/0 T dt L I gle + & [I%)e — kf « I¢la - kp * [I¥0le

where the last two terms tend to 0 in the L™-norm as p — oo (use Theorem 2.11). A

4. Examples.

In this section we consider wavelet type representations of some classical operators in

the fractional calculus.
4.1. Representation of fractional derivatives D¢ f, Rea > 0.

Theorem 4.1. Let v be a finite Borel measure on R satisfying the following conditions:
o0

a) /:cjdz/(x):() Vj=0,1,2 ... 1 / |z|Pd|v|(x) < co for some B > Rea,

|z|>1
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oo

0 I'(—a) /madu(x), a¢ N
b [ el =0, = o £ 0
I (—1)15/ 2 id (z) —/eN
i z°log z] v(z), a= )

—00
(for instance, one can take v supported by [0,00]). If f € L", 1 < r < oo, and the
derivative D®f (in the ®'-sense) belongs to LP, 1 < p < oo, then

(o ] e o]

Daf:i/yt*fdtzlimi/yt*fdt
0

v+ ) e e=0yy )t
€
where the limit exists in the LP-norm and in the a.e. sense.

This statement follows from Theorem 2.8.

Remark 4.2. In Theorem 4.1 one can take the following finite Borel measure (see Rubin

1994)

k
1
V:d—chj7k5>\j, k > Rea,
=0

where dy; is the Dirac measure, concentrated at the point A; € R, 0 < Ao < ... < Ag,
di = [l (M —Aj) and ¢ are defined in such a way that
k>i>j>1
fl@x—Aot) 1 Ao ... A1
" 1| fz=Mt) 1 A DUl I
v f = (BE)@) = o 1 LT =g ek A,
=

fl@—2gt) 1 A ... At
Remark 4.3. Similarly from Theorem 2.8 one can obtain wavelet type representations of

the Riesz derivatives D®f, Rea > 0, and the conjugate Riesz derivatives D f.

4.2. Inversion of Feller potentials.

Consider the integral operator

1 T c1+ casgn(z — y)
M%p = / w(y)dy, 0< Rea<1,
@) ogpa W

which is known as the Feller potential (see Samko, Kilbas and Marichev 1993, p. 214).
The following statement, which follows from Theorem 2.8, enables us to obtain a

wavelet type representation for the solution of the integral equation M%p = f provided

that A = 4(c? cos? % + ¢2 sin? %) # 0.
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Theorem 4.4. Let vi,v9 € M and let cg? be defined by

oo 0
) = / r®dv;(z ) =T(-a) / @ *dvi(z),  i=1,2.
0 — o0

Assume that v; satisfy the following conditions:

/ dv;(z) =0, / z|Pd|vi|(z) < 0o for some 8> Reoa, ¢t =1,2;

|z|>1

v, Is such that c$) =1, c(_l) = 0, and v is such that c(+) = 0, c() = 1. If the

equation M%*p = f, f € L™, 1 <r < o0, has a solution ¢ € LP, 1 < p < 1/Rea, then
(et ea)vr + (1 — c2)ve
N A

we have

for

oo

¢ = %((c1 +e2)DIf + (1 — 2)D2f) = 1 /lflifdt

£
where the limit is understood in the LP-norm and the a.e. sense.

4.3. Representation of fractional integrals.

Example 4.5. Consider the fractional integral ITp for 0 < a < 1, 1 < p < oco.
For a > 1/p this integral can be regarded as the ®’-distribution. Assume additionally,
that there is a function f € L™, 1 < r < oo, such that I§¢ = f in the ®'-sense. Let v = §;
be the unit Dirac mass at the point = 1. Clearly, v is a finite measure satisfying (3.11),

and (¢ *1v;)(x) = ¢(x —t). Then, by (3.6), ¢4 =T'(a), ¢é— =0, and we have

@y 1 (Pel@—t),,
(4.1) Tim r<a)/0 Tt = 1),

For example, let f belong to the Sobolev space LP, 1 <p <oo, 0 < a<1. Then f € L?
and there exists ¢ € LP such that f = I$¢ in the ®'-sense. According to Theorem 3.3, f
can be represented by (3.14) with r = p

Example 4.6. Let fe L", pc P, 0<a<l1l, 1<p<oo, 1<7r<oo. Assume that
f =1% in the ®'-sense. Take v = §; + §_1. Then for p — oo,

/ p(piytdt: / pla _t)dt 5 ayf, ay =20(a)cos(an/2) (cf. (3.6), (3.7)).
o timQ _p t|1- o
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Example 4.7 ( application to simplest differential equations).
Let v, ¥+ be the same as in Theorem 3.1. Assume that ¢ € LP, 1 < p < oo, and

consider the simplest differential equation
(4.2) f'=¢ (in the ®'-sense).

If there exists a solution f of (4.2) belonging to L", 1 < r < oo, then f may be defined

as the L"-limit:
P

1
f= lim — /(yt % p)dt.
P

e—0 €

This assertion follows from Theorem 3.1. The reader can easily generalize it to simplest

differential equations f(¥) = ¢ of higher orders.

Appendix 1

1
Proof of Lemma 2. 3. Let us estimate —(I}7*v)(z) for |z| > 1. Put
x

o = Rea. If z < —1, then

1 o, o a'—B—
S(13ry) / (11~ la)* dlv]y / oI dv) - a0

Consider the case z > 1. By Taylor’s formula,

L e 1 r - —y)z* m-l-l f a—m—1
;(I++ v)(z) = T / [Jgo jé‘(lyl— a—7) * m'I‘(a - / - dv(y)

=Y 4;+ B, m=d]
§=0

(for & = m the term B disappears). The relation (2.9) yields

o0 o
|45 -ma"j‘l/yjd\VI(y) Sm“"ﬂ‘l/yﬁd\V\(y)-x""_B_l-
T T
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For the term B we have

é\o

+/ / —t)™(z — t)*"™" 1dt‘d|v| = By + By,

0

where
. 0 lyl , oo —t
i<y [l [(-tm@en=mta= [@ro e [ (y-omdpio
—00 0 0 —00
m 0 o0
1 a'-m—1,m—j J 1 o' =m-1ym—p B
i Z (x+1) t"Idt \y| dlv|(y . (x+1) t"Pdt |y| d|v|(y)
szoo —o0 0
1 o0
<1 /(:c-l—t)"‘ ety / ylPdly|(y) + /d\y\(y)) ~ @B,
0 -1

Let us estimate Bs:

z/2 T Yy
1 !
Bo=t( [+ [)alt) [ 0m -7 e = B+ B
0 z/2

0

where

x/2 1/2 z/2
By < x“"m‘zfym+1d|1/|(y) : w“'_m_2< /dIVI(y)Jr/y’"“dlul(y)) . g® —1-min(8m+1)

0 0 1/2

z y
Bs < — /d\l/| / )¥ ldt ~ / y® d|v|(y) ~ 2> P~
w/2 0 $/2

Thus, the first relation in (2.10) is proved. Let us estimate k¥ (x) for |z| < 1. Since kT is
even, it suffices to consider the case 0 < z < 1. We have (see Lemma 2.2)

T

2k () = ﬁ( [@=wrany / (&~ )" — (&~ 9)*ldv(y)) = I + L

—Z

where
xT

| .xa’/d|1/\(y) s

—Z
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and for sufficiently small ¢ > 0,

ua37ﬂmwfu+wwuwnafﬂmmj@+mw*a+mwﬂﬁs
f;]irwm> “<dlu|(y x'*/um—f =
< ]$(1+\y|) “d|v|(y) | z° +/(x_T — ] .z

This gives the required estimate.
Let us estimate k£~ (x) for |z| < 1. By taking into account that £~ is odd we consider

only the case 0 < z < 1. We have

20k~ (z) = J1 + Jo

T

0
1 2 /
h = ‘7 — )% - “d ‘ . «
where | = |ty [ - 0t - g [ W) e
and |bw—\/[x— (2 — )" — 2ly|lav(v)]
—T 0
/ﬂww/ b+ [ di) [+l ar
—x T —X 0
If o/ <1, then |Ja| . /d|y|(y)/ta’—1dt+/d|y|(y /t—i—xa_ldt -~
—00 0
If o/ > 1, then |J2\§x(/(2|y\) ~Ldlv|(y) /\y\a “dv|(y)) - =
The proof is complete._ A
Appendix 2

1
Proof of Lemma 2.9 Letusestimate —(I;"*v)(z). Consider the case
x

36



x > 1. For a # 0 we have

)@ 7@ —y)"du(y)| + | / (v = y)dv(y)| = L + I,

where

L < / P lyl~Pdiv|(y) < &° / ylPdv|(y)

The estimation of I5 is more complicated. By (2.33) we obtain:

I, < ‘/Hc[(m—y)"‘ —x“]dV(y)‘ + |z ]de(y) + z¢ 7d’/(y)‘ -
.‘i[(x_y)a_xa]dy(y)‘”—ﬂ_ 5+‘ 7/2 [(z —y)* — 2%]dv(y )‘+
Ny ) N e R
)2 0 z/2

Consider A3 (the estimate for A; is similar):

x

As . / yPy Pdlv|(y) . z7P.

z/2

Let us estimate A,.

Yy

Jo— 1dt‘+‘ / / )= 1dt‘_A;+A2.

—z/2 0

o~—2
&
T
o\@

Consider Al (the estimate for A% is similar). For sufficiently small € > 0 we have

Yy Yy
ts—l
Al = ‘ / dv(y) / tl_ete_l(x—t)a_ldt‘ < / y'~edlv|(y) / dt.
0 0

x—t

o]
]

Since r—t>r—y>7% ,then
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1
Thus, for z > 1, a # 0 we get —(I;7*v)(z) = O(z=°71) for sufficiently small ¢ > 0.
x

Ifz>1, a =0, then

(1) (@) = | / av(y)| = | 7 dv(y)| <57,

1
In the case z < —1 the estimation of —(I;T%v)(z) is trivial by taking into account
x

that

(e n)@) - | / (o —y)*dv(y)| < [a] / ylPdlvl(v) - fol .

Let us estimate k*(z) for |z| < 1. Since kT is even, it suffices to consider the case

0< z< 1. We have

20k* (@) .| / (¢ — ) dv(y)| + ]w[(a: —9)" — (@ —y)°ldv(y)| = AL+ F.

—X

By (2.33),
(A2.1) Fy| <o / =3 dv|(y) . <.

Consider Fs:

(A2.2) Fj. ‘ ]$dy(y)/$(\y| —i—t)a_ldt‘ +‘ ]wdy(y)](\y| —t)a—ldt‘ — By + Bs.

—o00
For sufficiently small € > 0 we have

x

B; < / \y|_5d|v|(y)/(|y| +1)*7tdt < / |y\_6d\l/|(y)/t6_1dt:a:6.
e 5 e

0

Let us estimate Bs:

—z —z—/T z
Bes| [ tl-a -]+ | [ w) [l -] = B+ B,
—z—/T —00 0
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By (2.33),

—z —

Bi< [ avo)s@eva? [ W) e
—z—/T —z—/T
and
N r
B < / d|u|<y>/dtz\/5.
— 00 0

This gives the required estimate.
Let us estimate £~ (x) for |z| < 1. By taking into account that £~ is odd we consider

only the case 0 < z < 1. We have for a # 0:

2ck™ (z) = Mot 1) / x —y)%dv(y) Tat1) /|y|ad1/
+ ﬁ ]w[(:v =)+ (=z —y)* = 2[y[*ldv(y) = J1 + Ja,
where | J1| . ‘i(m - y)adu(y)‘ + ‘ / \y|"‘dv(y)‘ ~ 20, (cf. (A2.1)) and

2| / avly) [ (ul+o° ]+ | [ vty / (o] - )*dt| = By + B,
— 00 0 — 00

(cf. (A2.2)). Proceeding as in Appendix 1 (see the estimate of F» in (A2.2)) we obtain

what was required. If a =0, then

22k (z)| = (0, 2) — p(~,0)| . |a|’. A

Appendix 3

Let us prove the second equality in (2.16) for Re a > 0.
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Step 1. Consider the case 0 < Rea <1, a # 0. We have

(A3.1) vy = /OO b+ () da = / b (z)da = / i+ (z)dz = I + .

—oo |z|<1 |z|>1

The first integral has the form

I, = 2/k+(w)dm — F(a1+ D O/ df(_/(q;—y)adl/(y) -‘r_]((a:—y)a - (:L‘—y)a)dz/(y))
B F(a1+ 1) (/d (y)/ @ +ﬂ!y|)ada:+/d1/(y) (@ ;y)adx -

.\ / ) /(|y\+x>a—(\y|—x)a ot / ) [ W= (=27 )

For the second integral in (A3.1) we have

-1

I2 = /(I—1|-+a +
o0

13 1+a /i—m /(x—y)adv<y)= 1+a ]du(y)/wdx,

and (since v(R) = 0)

(I;tev)(x)— =13 + 1,  where

l—‘\g

0o § co —x . § 0o i
I§=/Il+ s [ [ @ —atavt) o [aw] T -
1 1 —00 T
o0 1 1 oo( )a o
r—y)*—=x
= ) _ d d
/ dv(y F(a +1) / y(y)/ x ot
1 —00 1
oo oo _ g
a+1 /dl/ / d$:B1+BQ+B3
1 ]

Our goal is to simplify the sum I; + Is = Ay + Ay + Az + Ay + I3 + By + Bs + Bs.
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To do this we transform A3 and By as follows:

lyl

T 4 jy+x (1~ éd” O/|y|+x>a—<\y| 0

_ ] dv(y 7 yi+o® ]1dz/(y) |/|de
and N 1 N 1
I'(1+a)By = /1 dv(y) 70 (z = yla -t dx = /O dv(y) 7 (z+ |y2a -t dr+
oo 1 “eo

(1 —y*)dv(y).

— du(y)/(x_yla_xadmz /du( )/(az—i-\yg _xad:ﬁ—i-
Y —o0 |yl
ly|

+ [ [ %daz—é (91 =~ V)vty)

O\"‘ é\o

1
dv(y /
Yy

By taking into account the last equalities we have

DL+ ays =~ 7 yldv(y) + 70 dv(y) 70 B

er—*
D\H

- |y| 0
(A3.2) =K, [ y*dv(y) + Ky | |y|%dv(y), where
Jrowon
1 Te—1)e 1
(A33) Kl - —a + / T a +/ 1+a F(l + (X)F(—Of)
1 0



(use integration by parts),

o] 1
1 +1 +1)* — (1-¢)~ 1
« & «
1 0
. oo(é'_i_l)a—l
Let us evaluate K». For A; by putting p= [ fdﬁ we have
1
T [+ t-1 201 1
a—1 _ ¢a—1 _ T’+ - _ “ - [
Al—p+(/ /)[(§+1) ¢ ]dg_p+/ e ==
0 0 0
1— Vi 1)>—2 2—2¢ 1—-2«
o} N Q «
0
For As in the case 0 < Rea <1 we obtain
1 1 —€ 1 —€
1)e~
Ay = lim / d§+/(§+1)a—1d£+/%d£+/(§+1)a—1d§ =
£ I —1 —1

1
o [EFD e
-1

By formula 3.22 (2) (Gradshteyn and Ryzhik, 1980) this yields

K, :p.v._/ @Sﬁdﬁ = —mctg(ar) =T'(1 4+ a)'(—a) cos(ar).

The equality
(A3.4) Ky =T(1+ a)I'(—a) cos(an)

which was obtained above for 0 < Rea < 1, can be easily extended to Rea =0 (a # 0)
by passing to the limit as Rea — +0, Ima = const. From (A3.2)-(A3.4) one has (2.16).

Step 2. Consider the case £ < Rea</l+1, LeN,a# L. Putag=a—¥, u= Iiy.
Then 0 < Reap < 1, and I$v = I{°u. In order to use Step 1, we first check the following

conditions:
a) [ u(@)dz=0, b) [ |z[f |u(z)|dz < oo for some By > Reay,
—0o0 |z|>1
¢) [ |z[7%[u(z)|dz < oo for some &y € (0,1).
|z|<1
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( the condition c¢) is needed only in the case Rea = £). By Lemma 2.1, u = I{v € L!
and a(€) = (—i€)~to(€) = (I70) (€)(i€)*, € € (0,1). Since I**v € L (see Lemma 2.1),
then 4(0) = 0 that gives a).

Let us check b). For y = —£¢ >0 we have

-1

/ 21 u(z) da / ylPdly|(y) / (1— )P~ < o / ylPdly|(y)

—° /1yl

Since (by the first condition in 2.9)), u = I{v = (—1)*I‘v, then

/xﬂo\u(a:)\da: . /mﬂodm/(y —z)* 7 ldv|(y) < oo as above.
1 1 x
Let us check c¢). Note, that by the first condition in (2.9),
(A3.5) r‘v=(-1)1tw
This gives
1 o 1/y 1
/33_50 |u(z)|dzx . /ye_‘sodll(y) /(1 )1 60dt—|—/ =% dy(y / )% dt < 0o
0 1 0 0
by (2.10). Similarly for u=I%v,

0

JERTEIES

-1

/1yl 1
/ i %dv|(y) / (1- )10t + / bl dpl(w) [(- 0" < o
0
Now in accordance with Step 1 by changing the order of integration we have:
o] o] 0
/ kY (z)dr = F(—ao)(/xaou(x)da:—l-cos(amr) / |a:|°‘°u(x)dx> =
—00 0 —00
F B oo
=(-1)* (F(ZO)B(CMO + 1,6)(/ z%dv(x) + cos(aom)(— / lz|%dv(z) ) =
0
/ x*dv(z) + cos(arm / |z|“dv(z ))
0 —oo
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Step 3. Let @ = £ be a nonnegative integer. Note that

(A3.6) vy = 70 it (o) da = ]O

Indeed, since k™ (z) is even, then

1

7+:2/k+(:c)da:+2
0

/

£ (2.8))

where (c

1 0

1
d
/If_u )dy/f+/1_‘;y
0 Yy —1
and (use the equality [(I{v)(z)dz =
=— [ = [t dy— [ =
v = [ [tnway- [ 5
1 T 1 —00

From (A3.6), (A3.5) we get

L (10)(2)da.

log m

kT (z)dx = Uy + Uy,

dz
)dy - = —(I_el_y (y)dy

[

<~

0, (see step 2))

/ () (y)dy = / log M(ﬂ V) (y)dy.

ly|>1

1 [ee] 1
¢ £y (=1)° / ¢ / -1y 1
1 1— log —dt =
_/ ly|“dv(y 0/ og |y|dt—{— ) J ydu(y)o (1—-1¢) Ogtydt
(—1)6/ 1

= ytlog —du(y).
no ) eyt

A
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