Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment X.

1. Problem 1.

a) Is it possible to construct f(x), $x \in [0, 1]$, such that f'(x) = D(x)? Here D(x) = 1 for $x \in [0, 1] \cap \mathbf{Q}$, and D(x) = 0 for $x \in [0, 1] \cap \mathbf{R} \setminus Q$.

Hint: Prove the **Darboux Theorem**: If f(x) is differentiable on [0, 1], then $\forall C \in [f'(0), f'(1)]$ there exists $x \in [0, 1]$ such that f'(x) = C.

b) Construct a function f(x) on [0, 1] such that f'(x) exists at every $x \in [0, 1]$, (and bounded), but f'(x) is not continuous for every $x \in F$, where $F \subset [0, 1]$, and m(F) > 0.

Hint: Let $F \subset [0,1]$, m(F) > 0 be closed, nowhere dense, and such that $\inf F = 0$, $\sup F = 1$. Define

$$f(x) = (x - a_n)^2 (x - b_n)^2 \sin \frac{1}{(b_n - a_n)(x - a_n)(x - b_n)}, \qquad x \in (a_n, b_n),$$

where $[0,1] \setminus F = \bigcup_{i=1}^{\infty} (a_i, b_i)$, and f(x) = 0 otherwise.

c) Construct a **continuous** function f on \mathbf{R} which is not differentiable at any point.

Hint: Put $\phi(x) = x, x \in [0, 1]$, and $\phi(x) = 2 - x, x \in [1, 2]$. Define $\phi_0(x) := \phi(x)$, $x \in [0, 2]$, and $\phi_0(x + 2) = \phi_0(x)$. Then, define $f(x) := \sum_{n=0}^{\infty} (3/4)^n \phi_0(4^n x)$.

a) Fix any $x \in \mathbf{R}$ and any $m \in \mathbf{N}$. Observe that there exists $k \in \mathbf{Z}$ such that $k \leq 4^m x \leq k+1$, and put $\alpha_m := 4^{-m}k$, $\beta_m := 4^{-m}(k+1)$. Prove that $|\phi_0(4^n\beta_m) - \phi_0(4^n\alpha_m)| = 0$, for n > m, and $|\phi_0(4^n\beta_m) - \phi_0(4^n\alpha_m)| = 4^{n-m}$ for $n \leq m$.

b) Conclude that $|f(\beta_m) - f(\alpha_m)| \ge 1/2(3/4)^m$, and show that f is not differentiable at x.

2. Problem 2. a) Let f(0) = 0, f(1) = 5, f(x) = 1 - x, for $x \in (0, 1)$. Use definition to find the total variation of f(x) on [0, 1].

b) Write out $f(x) = \cos^2 x$ on $[0, \pi]$ as a difference of two increasing functions.

c) Let $f(x) = x^2$, $x \in [0, 1)$, f(x) = x + 3, $x \in (1, 2]$, f(1) = 5. Check that $V_0^2(f) = V_0^1(f) + V_1^2(f)$. Write out f(x) as a difference of two increasing functions.

3. Problem 3. a) Let $f: V_0^1(|f|) < \infty$. Is it true that $V_0^1(f) < \infty$?

b) Let f be continuous on [0, 1], and such that $V_0^1(|f|) < \infty$. Prove that $V_0^1(f) < \infty$. Hint: Use the mean-value theorem. 4. **Problem 4.** a) Construct a continuous f(x) on [a, b] such that $V_a^b(f) < \infty$, but f(x) "is not Holder" for any $\alpha > 0$, (f is said to satisfy the Holder condition for some $\alpha > 0$ on [a, b], if there exists a constant K > 0 such that

$$\forall x, y \in [a, b], \qquad |f(x) - f(y)| \le K |x - y|^{\alpha}).$$

Hint: Take [a, b] = [0, 1/2], and $f(x) = -1/\log x$, $x \in (0, 1/2]$, f(0) = 0.

b)* Construct an example of a continuous f(x) on [a, b], such that $V_a^b(f) = \infty$, but f "is Holder" of the given $0 < \alpha < 1$.

Hint: Let $(a_i)_{i=1}^{\infty}$ be such that $a_i > a_{i+1} > 0$ and $\sum_{i=1}^{\infty} a_i = A$. Put $f(x) = 0 \ \forall x = a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots; f(x) = 1/n$ at the point $a_1 + a_2 + a_4 \dots + a_{n-1} + a_n/2, n = 1, 2, 3, \dots; f(1) = 0$, and make f to be linear on any segment of the type $[\sum_{i=1}^{n-1} a_i, \sum_{i=1}^{n-1} a_i + a_n/2], [\sum_{i=1}^{n-1} a_i + a_n/2, \sum_{i=1}^{n} a_i]$, and on the segments $[0, a_1/2], [a_1/2, a_1]$.

To show that f "is Holder" of the given $0 < \alpha < 1$, take $a_n := n^{-1/\alpha}$, and consider two cases, 1) points $M_1(x_1, y_1)$, $M_2(x_2, y_2)$ belong to "the same" part of the graph of f(x), 2) points $M_1(x_1, y_1)$, $M_2(x_2, y_2)$ do not belong to "the same" part of the graph of f(x).

5. Problem 5. a) Let (f_n(x))[∞]_{n=1} be a sequence of functions having bounded variation on [a, b]. Assume also that ∑[∞]_{n=1} V^b_a(f_n) < ∞, and f_n(a) = 0, ∀n ∈ N. Prove that the series ∑[∞]_{n=1} f_n(x) is convergent ∀x ∈ [a, b], and V^b_a(∑[∞]_{n=1} f_n) ≤ ∑[∞]_{n=1} V^b_a(f_n).
b) Let (f_n(x))[∞]_{n=1} be a sequence of continuous functions having bounded variation on [a, b]. Assume also that the series ∑[∞]_{n=1} f_n(x) converges uniformly on [a, b]. Is it true

that
$$V_a^b(\sum_{n=1}^{\infty} f_n) < \infty$$
?

Hint: Consider $(f_n(x))_{n=1}^{\infty}$ on [0,1], $f_n(x) := \sin(n\pi(x(n+1)-1))/n$ on [1/(n+1), 1/n], $f_n(x) := 0$ on $[0,1] \setminus [1/(n+1), 1/n]$. You may also use an example from Problem 1, c).

c) Construct a function f, which is of bounded variation on any finite segment (and hence is a difference of two monotonic functions), but, nevertheless, is not monotonic on any segment.

Hint: Let $\phi_0(x) = |x|$ for $x \in [-1/2, 1/2]$, $\phi_0(x+1) = \phi_0(x)$, and let $\phi_n(x) := \min(\phi_0(x), 8^{-n})$. Consider $f(x) := \sum_{n=0}^{\infty} 2^{-n} \phi_n(8^n x)$.