Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment X.

1. Problem 1.

a) Is it possible to construct $f(x), x \in[0,1]$, such that $f^{\prime}(x)=D(x)$? Here $D(x)=1$ for $x \in[0,1] \cap \mathbf{Q}$, and $D(x)=0$ for $x \in[0,1] \cap \mathbf{R} \backslash Q$.
Hint: Prove the Darboux Theorem: If $f(x)$ is differentiable on $[0,1]$, then $\forall C \in$ $\left[f^{\prime}(0), f^{\prime}(1)\right]$ there exists $x \in[0,1]$ such that $f^{\prime}(x)=C$.
b) Construct a function $f(x)$ on $[0,1]$ such that $f^{\prime}(x)$ exists at every $x \in[0,1]$, (and bounded), but $f^{\prime}(x)$ is not continuous for every $x \in F$, where $F \subset[0,1]$, and $m(F)>0$.
Hint: Let $F \subset[0,1], m(F)>0$ be closed, nowhere dense, and such that $\inf F=0$, $\sup F=1$. Define

$$
f(x)=\left(x-a_{n}\right)^{2}\left(x-b_{n}\right)^{2} \sin \frac{1}{\left(b_{n}-a_{n}\right)\left(x-a_{n}\right)\left(x-b_{n}\right)}, \quad x \in\left(a_{n}, b_{n}\right)
$$

where $[0,1] \backslash F=\cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)$, and $f(x)=0$ otherwise.
c) Construct a continuous function f on \mathbf{R} which is not differentiable at any point.

Hint: Put $\phi(x)=x, x \in[0,1]$, and $\phi(x)=2-x, x \in[1,2]$. Define $\phi_{0}(x):=\phi(x)$, $x \in[0,2]$, and $\phi_{0}(x+2)=\phi_{0}(x)$. Then, define $f(x):=\sum_{n=0}^{\infty}(3 / 4)^{n} \phi_{0}\left(4^{n} x\right)$.
a) Fix any $x \in \mathbf{R}$ and any $m \in \mathbf{N}$. Observe that there exists $k \in \mathbf{Z}$ such that $k \leq 4^{m} x \leq$ $k+1$, and put $\alpha_{m}:=4^{-m} k, \beta_{m}:=4^{-m}(k+1)$. Prove that $\left|\phi_{0}\left(4^{n} \beta_{m}\right)-\phi_{0}\left(4^{n} \alpha_{m}\right)\right|=0$, for $n>m$, and $\left|\phi_{0}\left(4^{n} \beta_{m}\right)-\phi_{0}\left(4^{n} \alpha_{m}\right)\right|=4^{n-m}$ for $n \leq m$.
b) Conclude that $\left|f\left(\beta_{m}\right)-f\left(\alpha_{m}\right)\right| \geq 1 / 2(3 / 4)^{m}$, and show that f is not differentiable at x.
2. Problem 2. a) Let $f(0)=0, f(1)=5, f(x)=1-x$, for $x \in(0,1)$. Use definition to find the total variation of $f(x)$ on $[0,1]$.
b) Write out $f(x)=\cos ^{2} x$ on $[0, \pi]$ as a difference of two increasing functions.
c) Let $f(x)=x^{2}, x \in[0,1), f(x)=x+3, x \in(1,2], f(1)=5$. Check that $V_{0}^{2}(f)=$ $V_{0}^{1}(f)+V_{1}^{2}(f)$. Write out $f(x)$ as a difference of two increasing functions.
3. Problem 3. a) Let $f: V_{0}^{1}(|f|)<\infty$. Is it true that $V_{0}^{1}(f)<\infty$?
b) Let f be continuous on $[0,1]$, and such that $V_{0}^{1}(|f|)<\infty$. Prove that $V_{0}^{1}(f)<\infty$.

Hint: Use the mean-value theorem.
4. Problem 4. a) Construct a continuous $f(x)$ on $[a, b]$ such that $V_{a}^{b}(f)<\infty$, but $f(x)$ "is not Holder" for any $\alpha>0,(f$ is said to satisfy the Holder condition for some $\alpha>0$ on $[a, b]$, if there exists a constant $K>0$ such that

$$
\left.\forall x, y \in[a, b], \quad|f(x)-f(y)| \leq K|x-y|^{\alpha}\right)
$$

Hint: Take $[a, b]=[0,1 / 2]$, and $f(x)=-1 / \log x, x \in(0,1 / 2], f(0)=0$.
b) ${ }^{*}$ Construct an example of a continuous $f(x)$ on $[a, b]$, such that $V_{a}^{b}(f)=\infty$, but f "is Holder" of the given $0<\alpha<1$.
Hint: Let $\left(a_{i}\right)_{i=1}^{\infty}$ be such that $a_{i}>a_{i+1}>0$ and $\sum_{i=1}^{\infty} a_{i}=A$. Put $f(x)=0 \forall x=a_{1}, a_{1}+$ $a_{2}, a_{1}+a_{2}+a_{3}, \ldots, ; f(x)=1 / n$ at the point $a_{1}+a_{2}+a_{+} \ldots+a_{n-1}+a_{n} / 2, n=1,2,3, \ldots$; $f(1)=0$, and make f to be linear on any segment of the type [$\sum_{i=1}^{n-1} a_{i}, \sum_{i=1}^{n-1} a_{i}+a_{n} / 2$], $\left[\sum_{i=1}^{n-1} a_{i}+a_{n} / 2, \sum_{i=1}^{n} a_{i}\right]$, and on the segments $\left[0, a_{1} / 2\right],\left[a_{1} / 2, a_{1}\right]$.
To show that f "is Holder" of the given $0<\alpha<1$, take $a_{n}:=n^{-1 / \alpha}$, and consider two cases, 1) points $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right)$ belong to "the same" part of the graph of $f(x)$, 2) points $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right)$ do not belong to "the same" part of the graph of $f(x)$.
5. Problem 5. a) Let $\left(f_{n}(x)\right)_{n=1}^{\infty}$ be a sequence of functions having bounded variation on $[a, b]$. Assume also that $\sum_{n=1}^{\infty} V_{a}^{b}\left(f_{n}\right)<\infty$, and $f_{n}(a)=0, \forall n \in \mathbf{N}$. Prove that the series $\sum_{n=1}^{\infty} f_{n}(x)$ is convergent $\forall x \in[a, b]$, and $V_{a}^{b}\left(\sum_{n=1}^{\infty} f_{n}\right) \leq \sum_{n=1}^{\infty} V_{a}^{b}\left(f_{n}\right)$.
b) Let $\left(f_{n}(x)\right)_{n=1}^{\infty}$ be a sequence of continuous functions having bounded variation on $[a, b]$. Assume also that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$. Is it true that $V_{a}^{b}\left(\sum_{n=1}^{\infty} f_{n}\right)<\infty$?
Hint: Consider $\left(f_{n}(x)\right)_{n=1}^{\infty}$ on $[0,1], f_{n}(x):=\sin (n \pi(x(n+1)-1)) / n$ on $[1 /(n+1), 1 / n]$, $f_{n}(x):=0$ on $[0,1] \backslash[1 /(n+1), 1 / n]$. You may also use an example from Problem 1 , c).
c) Construct a function f, which is of bounded variation on any finite segment (and hence is a difference of two monotonic functions), but, nevertheless, is not monotonic on any segment.
Hint: Let $\phi_{0}(x)=|x|$ for $x \in[-1 / 2,1 / 2], \phi_{0}(x+1)=\phi_{0}(x)$, and let $\phi_{n}(x):=$ $\min \left(\phi_{0}(x), 8^{-n}\right)$. Consider $f(x):=\sum_{n=0}^{\infty} 2^{-n} \phi_{n}\left(8^{n} x\right)$.

