Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment XI.

1. **Problem 1.** a) Let $E := \bigcup_{k=1}^{\infty} E_k \subset \mathbf{R}$, $E_k := [2^{-2k-1}, 2^{-2k}] \cup [-2^{-2k}, -2^{-2k-1}]$. Show that at 0, E has upper density 2/3 and lower density 1/3. In other words, show that

$$\overline{\lim_{\delta \to 0}} \frac{m(E \cap (-\delta, \delta))}{2\delta} = \frac{2}{3}, \qquad \underline{\lim_{\delta \to 0}} \frac{m(E \cap (-\delta, \delta))}{2\delta} = \frac{1}{3}.$$

b) Construct a set $E \subset \mathbf{R}$ which has density 1/2 at the origin.

c) Suppose that E is a measurable set of real numbers with arbitrary small periods, i.e., there exists a sequence $(p_i)_{i=1}^{\infty}$, $p_i > 0$, $p_i \to 0$ as $i \to \infty$, so that $E + p_i = E \forall i$. Prove that either m(E) = 0 or $m(\mathbf{R} \setminus E) = 0$.

Hint: Pick $\alpha \in \mathbf{R}$, and put $f(x) := m(E \cap [\alpha, x])$ for $x > \alpha$. Show that

$$f(x + p_i) - f(x - p_i) = f(y + p_i) - f(y - p_i), \qquad \alpha + p_i < x < y.$$

What does this imply about f'(x) if m(E) > 0?

d) Suppose that f is Lebesgue measurable on \mathbf{R} with periods $s, t, s/t \in \mathbf{R} \setminus \mathbf{Q}$ ($\forall x \in \mathbf{R}$, f(x+t) = f(x), f(x+s) = f(x)). Prove that f(x) = const almost everywhere, but f need not to be a constant.

Hint: Apply c) to the set $\{x \in \mathbf{R} : f(x) > \lambda\}$, where $\lambda > 0$.

- 2. Problem 2. In this exercise f is a continuous function on [a, b], $F, E \subset [a, b]$ are measurable.
 - a) Let F be closed. Prove that f(F) is closed.
 - b) Let F be F_{σ} , then f(F) is F_{σ} .

Definition (Lusin). We say that f has N-property, if $m(f(E)) = 0 \forall E : m(E) = 0$.

c) Prove that absolutely continuous function has N-property.

d) Show that f(E) is measurable $\forall E$ measurable **iff** f has N-property.

Hint. To prove part **if**, observe that f does not have N-property, implies the existence of E, such that m(E) = 0, and $\mu^*(f(E)) > 0$. Then there exists $B \subset f(E)$ which is not measurable (why?). Consider $A := f^{-1}(B) \subset E$. Show that A is measurable, and get a contradiction.

e) Prove that an absolutely continuous function maps measurable sets onto measurable sets.

f) Construct a **continuous** one-to-one mapping of [0, 1] onto [0, 2] which does not have N-property.

Hint: Consider f(x) = c(x) + x, where c(x) is the Cantor ladder, defined in Problem 3, Assignment 7. What is the measure of the image of the Cantor set?

3. **Problem 3.** This exercise helps to understand "the change of variables" in the Lebesgue integral.

Let $(a, b) \subset \mathbf{R}$ be bounded.

a) Choose intervals $W_n \subset (a, b)$ in such away that $\bigcup_n W_n$ is dense in (a, b), and the set $K := (a, b) \setminus \bigcup_n W_n$ has positive measure.

b) Choose continuous functions ϕ_n on W_n so that $\phi_n(x) = 0$ outside W_n , and $0 < \phi_n(x) < 2^{-n}$ in W_n .

Put

$$\phi(x) := \sum_{n=1}^{\infty} \phi_n(x), \qquad T(x) := \int_a^x \phi(t) dt, \qquad x \in (a, b).$$

- c) Prove that T is one-to-one, and differentiable at every point.
- d) Prove that T' is continuous, $T'(x) = 0, \forall x \in K, m(T(K)) = 0.$

e) Prove that if E is a nonmeasurable subset of K (why it exists?), then $1_{T(E)}(x)$ is measurable, but $1_{T(E)}(Tx)$ is not.

Observe that ϕ_n can be chosen such that T is infinitely differentiable homeomorphism of (a, b) onto some segment in **R**.

4. **Problem 4.** This exercise is a part of the proof of "the change of variables" in the Lebesgue integral.

Let ϕ be increasing and absolutely continuous function on [p,q], $x = \phi(t)$, $a = \phi(p)$, $b = \phi(q)$.

a) Let E_t me a measurable subset of $[p,q], E_x := \phi(E_t)$. Prove that

$$m(E_x) = \int_{E_t} \phi'(t) dt$$

Hint. Prove this at first for $E_t = [\alpha, \beta]$. Then for (α, β) , open and closed E_t . In the general case, find closed F_x , and open G_x such that $\forall \epsilon > 0$,

$$F_x \subset E_x \subset G_x \subset (a,b), \qquad m(F_x) > m(E_x) - \epsilon, \qquad m(G_x) < m(E_x) + \epsilon.$$

Consider $F_t := \phi^{-1}(F_x), G_t := \phi^{-1}(G_x)$, and observe that

$$m(F_x) \le \int_{E_t} \phi'(t) dt \le m(G_x).$$

b) Let all notation be as in a), and let $e_x \subset [a, b], m(e_x) = 0, e_t = \phi^{-1}(e_x)$. Prove that

$$m(e_t^*) = 0, \qquad e_t^* := \{t \in e_t : \phi'(t) = 0 \text{ is false}\}$$

Hint: Observe that

$$e_x \subset G_x^n \subset G_x^{n-1} \subset \ldots \subset G_x^2 \subset G_x^1 \subset (a,b), \qquad m(G_x^n) \to 0.$$

Define

$$H_x := \cap_{n=1}^{\infty} G_x^n, \qquad H_t := \phi^{-1}(H_x), \qquad G_t^n := \phi^{-1}(G_x^n),$$

and prove that H_t is measurable, and $m(H_x) = 0$. Show that $\int_{H_t} \phi'(t) dt = 0$.