Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment XII.

1. **Problem 1.** a) Let μ be a complex measure on a σ -algebra Σ , and let $E \in \Sigma$. Define $\lambda(E) := \sup \sum |\mu(E_i)|$, the supremum being taken over all **finite** partitions $\{E_i\}$ of E. Does it follow that $\lambda = |\mu|$?

b) Define a measure λ on Lebesgue measurable subsets of \mathbf{R}^2 as follows

$$\lambda(A) := \int_{A \cap \mathbf{R}} f(x, 0) dx, \qquad A \subset \mathbf{R}^2,$$

Here f(x, 0) is a continuous function having a compact support on $\mathbf{R} = \{(x, y) : y = 0\}$.

Prove that λ is *absolutely continuous* with respect to the Lebesgue measure on **R**, but is *singular* with respect to the Lebesgue measure on **R**².

2. **Problem 2.**

Definition. We say that two measures λ_1, λ_2 , defined on a σ -algebra Σ are **mutually singular**, $(\lambda_1 \perp \lambda_2)$, if there exists a pair of **disjoint** sets A, B such that λ_1 is concentrated on A, and λ_2 is concentrated on B.

Suppose that μ , λ , λ_1 , λ_2 are measures on a σ -algebra Σ , and μ is positive. Prove the following chain of stements.

- a) If λ is concentrated on A, so is $|\lambda|$.
- b) If $\lambda_1 \perp \lambda_2$, then $|\lambda_1| \perp |\lambda_2|$.
- c) If $\lambda_1 \perp \mu$, and $\lambda_2 \perp \mu$, then $(\lambda_1 + \lambda_2) \perp \mu$.
- d) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $(\lambda_1 + \lambda_2) \ll \mu$.
- e) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
- f) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 \perp \lambda_2$.
- g) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda = 0$.
- 3. **Problem 3.** Suppose μ and λ are measures on a σ -algebra Σ , μ is positive, λ is complex. Prove that the following two conditions are equivalent:
 - $\aleph) \ \lambda \ll \mu.$

□) For every $\epsilon > 0$ there exists a $\delta > 0$ such that $|\lambda(E)| < \epsilon$ for all $E \in \Sigma$ with $\mu(E) < \delta$.

Hint. To show that \aleph) implies \beth), assume that \beth) is false. Then there exists $\epsilon > 0$ and $E_n \in \Sigma$ such that $\mu(E_n) < 2^{-n}$, but $|\lambda(E_n)| \ge \epsilon$. Put $A_n := \bigcup_{i=n}^{\infty} E_i$, $A := \bigcup_{n=1}^{\infty} A_n$. Prove that $\mu(A) = 0$, but $|\lambda|(A) > 0$. Use Problem 2, e), to get a contradiction. 4. **Problem 4.** Suppose μ is a positive measure on Σ , $g \in L(X, \mu)$, and $\lambda(E) = \int_{E} f d\mu$, $E \in \Sigma$. Prove that $|\lambda|(E) = \int_{E} |f| d\mu$.

Hint. Observe that $|\lambda|(E) \leq \int_{E} |f| d\mu$. To show the opposite inequality, construct a sequence $(g_n(x))_{n=1}^{\infty}$ of measurable simple functions such that $|g_n(x)| = 1$, and $\lim_{n \to \infty} g_n(x) f(x) = |f(x)|.$ Check that

$$\left|\int_{A} g_{n} f d\mu\right| = \left|\sum_{j} a_{n,j} \int_{A \cap A_{n,j}} f d\mu\right| = \left|\sum_{j} a_{n,j} \lambda(A \cap A_{n,j})\right| \le \sum_{j} \left|\lambda(A \cap A_{n,j})\right| \le \left|\lambda\right|(A),$$

where $a_{n,j}$ are the values of g_n , attained on the sets $A_{n,j}$.

5. Problem 5. Let $(r_n)_{n=1}^{\infty}$ be an enumeration of the rational numbers, and for each positive integer n, let $f_n : \mathbf{R} \to \mathbf{R}$ be defined as $f_n(x) = 2^{n+1}, x \in [r_n - 2^{-n}, r_n + 2^{-n}],$ and zero otherwise. Define a measure λ on Borel subsets of **R** by

$$\lambda(A) := \int_{A} f(x) dx, \qquad f(x) := \sum_{n=1}^{\infty} f_n(x).$$

a) Show that f(x) is finite almost everywhere with respect to m, the Lebesgue measure on \mathbf{R} .

Hint. Define $A_k := \{x \in \mathbf{R} : f(x) \ge 2^k\}$, k is a nonnegative integer. To show that $m(\bigcap_{k=1}^{\infty} A_k) = 0$ observe that $\sum_{k=1}^{\infty} m(A_k) < \infty$.

b) Show that λ is σ -finite. In other words find a partition of **R** into disjoint sets B_k , such that $\mathbf{R} = \bigcup_{k=1}^{\infty} B_k$, and $\lambda(B_k) < \infty$.

Hint. One can take

$$B_1 := A_1^c, \qquad B_k := A_k^c \setminus (\bigcup_{l=1}^{k-1} A_l^c).$$

- c) Show that $\lambda \ll m$.
- d) Show that each non-empty open subset of **R** has infinite measure under λ .

Hint. Observe that $f(x) \ge \sum_{k=1}^{\infty} f_{n_k}(x)$, where a subsequence n_k is chosen such that segments $[r_{n_k} - 2^{-n_k}, r_{n_k} + 2^{-n_k}]$, $[r_{n_l} - 2^{-n_l}, r_{n_l} + 2^{-n_l}]$ are disjoint (for $k \ne l$) and belong to the given open interval. Use $\int_{\mathbf{R}} f_n(x) dx = 1$.