Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment XII.

1. Problem 1. a) Let μ be a complex measure on a σ-algebra Σ, and let $E \in \Sigma$. Define $\lambda(E):=\sup \sum\left|\mu\left(E_{i}\right)\right|$, the supremum being taken over all finite partitions $\left\{E_{i}\right\}$ of E. Does it follow that $\lambda=|\mu|$?
b) Define a measure λ on Lebesgue measurable subsets of \mathbf{R}^{2} as follows

$$
\lambda(A):=\int_{A \cap \mathbf{R}} f(x, 0) d x, \quad A \subset \mathbf{R}^{2},
$$

Here $f(x, 0)$ is a continuous function having a compact support on $\mathbf{R}=\{(x, y): y=0\}$.
Prove that λ is absolutely continuous with respect to the Lebesgue measure on \mathbf{R}, but is singular with respect to the Lebesgue measure on \mathbf{R}^{2}.

2. Problem 2.

Definition. We say that two measures λ_{1}, λ_{2}, defined on a σ-algebra Σ are mutually singular, $\left(\lambda_{1} \perp \lambda_{2}\right)$, if there exists a pair of disjoint sets A, B such that λ_{1} is concentrated on A, and λ_{2} is concentrated on B.

Suppose that $\mu, \lambda, \lambda_{1}, \lambda_{2}$ are measures on a σ-algebra Σ, and μ is positive. Prove the following chain of stements.
a) If λ is concentrated on A, so is $|\lambda|$.
b) If $\lambda_{1} \perp \lambda_{2}$, then $\left|\lambda_{1}\right| \perp\left|\lambda_{2}\right|$.
c) If $\lambda_{1} \perp \mu$, and $\lambda_{2} \perp \mu$, then $\left(\lambda_{1}+\lambda_{2}\right) \perp \mu$.
d) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu$, then $\left(\lambda_{1}+\lambda_{2}\right) \ll \mu$.
e) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
f) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \perp \mu$, then $\lambda_{1} \perp \lambda_{2}$.
g) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda=0$.
3. Problem 3. Suppose μ and λ are measures on a σ-algebra Σ, μ is positive, λ is complex. Prove that the following two conditions are equivalent:
※) $\lambda \ll \mu$.
】) For every $\epsilon>0$ there exists a $\delta>0$ such that $|\lambda(E)|<\epsilon$ for all $E \in \Sigma$ with $\mu(E)<\delta$.

Hint. To show that $\aleph)$ implies \beth), assume that \beth) is false. Then there exists $\epsilon>0$ and $E_{n} \in \Sigma$ such that $\mu\left(E_{n}\right)<2^{-n}$, but $\left|\lambda\left(E_{n}\right)\right| \geq \epsilon$. Put $A_{n}:=\cup_{i=n}^{\infty} E_{i}, A:=\cup_{n=1}^{\infty} A_{n}$. Prove that $\mu(A)=0$, but $|\lambda|(A)>0$. Use Problem 2, e), to get a contradiction.
4. Problem 4. Suppose μ is a positive measure on $\Sigma, g \in L(X, \mu)$, and $\lambda(E)=\int_{E} f d \mu$, $E \in \Sigma$. Prove that $|\lambda|(E)=\int_{E}|f| d \mu$.
Hint. Observe that $|\lambda|(E) \leq \int_{E}|f| d \mu$. To show the opposite inequality, construct a sequence $\left(g_{n}(x)\right)_{n=1}^{\infty}$ of measurable simple functions such that $\left|g_{n}(x)\right|=1$, and $\lim _{n \rightarrow \infty} g_{n}(x) f(x)=|f(x)|$. Check that
$\left|\int_{A} g_{n} f d \mu\right|=\left|\sum_{j} a_{n, j} \int_{A \cap A_{n, j}} f d \mu\right|=\left|\sum_{j} a_{n, j} \lambda\left(A \cap A_{n, j}\right)\right| \leq \sum_{j}\left|\lambda\left(A \cap A_{n, j}\right)\right| \leq|\lambda|(A)$,
where $a_{n, j}$ are the values of g_{n}, attained on the sets $A_{n, j}$.
5. Problem 5. Let $\left(r_{n}\right)_{n=1}^{\infty}$ be an enumeration of the rational numbers, and for each positive integer n, let $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f_{n}(x)=2^{n+1}, x \in\left[r_{n}-2^{-n}, r_{n}+2^{-n}\right]$, and zero otherwise. Define a measure λ on Borel subsets of \mathbf{R} by

$$
\lambda(A):=\int_{A} f(x) d x, \quad f(x):=\sum_{n=1}^{\infty} f_{n}(x) .
$$

a) Show that $f(x)$ is finite almost everywhere with respect to m, the Lebesgue measure on \mathbf{R}.
Hint. Define $A_{k}:=\left\{x \in \mathbf{R}: f(x) \geq 2^{k}\right\}, k$ is a nonnegative integer. To show that $m\left(\cap_{k=1}^{\infty} A_{k}\right)=0$ observe that $\sum_{k=1}^{\infty} m\left(A_{k}\right)<\infty$.
b) Show that λ is σ-finite. In other words find a partition of \mathbf{R} into disjoint sets B_{k}, such that $\mathbf{R}=\cup_{k=1}^{\infty} B_{k}$, and $\lambda\left(B_{k}\right)<\infty$.
Hint. One can take

$$
B_{1}:=A_{1}^{c}, \quad B_{k}:=A_{k}^{c} \backslash\left(\cup_{l=1}^{k-1} A_{l}^{c}\right) .
$$

c) Show that $\lambda \ll m$.
d) Show that each non-empty open subset of \mathbf{R} has infinite measure under λ.

Hint. Observe that $f(x) \geq \sum_{k=1}^{\infty} f_{n_{k}}(x)$, where a subsequence n_{k} is chosen such that segments $\left[r_{n_{k}}-2^{-n_{k}}, r_{n_{k}}+2^{-n_{k}}\right],\left[r_{n_{l}}-2^{-n_{l}}, r_{n_{l}}+2^{-n_{l}}\right]$ are disjoint (for $k \neq l$) and belong to the given open interval. Use $\int_{\mathbf{R}} f_{n}(x) d x=1$.

