Real Analysis, Math 821.
 Instructor: Dmitry Ryabogin
 Assignment XIII.

1. Problem 1. a) Compute the Hardy-Littlewood maximal function $M 1_{[0,1]}(x)$, of the characteristic function of segment $[0,1]$.
b) Let $f(x)=x^{-1}(\log x)^{-2}$ if $x \in(0,1 / 2)$, and zero on the rest of \mathbf{R}. Prove that f is integrable. On the other hand, show that $M f(x) \geq|2 x \log (2 x)|^{-1}$, if $x \in(0,1 / 4)$, so that $\int_{0}^{1} M f(x) d x=\infty$.
c) Assume that both f and $M f$ are integrable on \mathbf{R}^{n}. Prove that $f(x)=0$ almost everywhere.

Hint. Show that there exists a constant $c=c(f)$ such that $M f(x) \geq c(f)|x|^{-n}$ whenever x is sufficiently large.
2. Problem 2. Let $f(x)=1$ if $x \in[0,1]$, and zero otherwise. Define $h_{c}(x):=$ $\sup _{n \in \mathbf{N}} n^{c} f(n x)$. Prove that
a) h_{c} is integrable on \mathbf{R} if $c \in(0,1)$.
b) h_{1} is in weak-type L but not integrable on \mathbf{R}.
c) h_{c} is not in weak-type L if $c>1$.

Hint. For a.e. $x \in \mathbf{R}, h_{c}(x)=\sum_{n=1}^{\infty} 1_{(1 /(n+1), 1 / n]}(x) n^{c}$.
3. Problem 3. For any set $E \subset \mathbf{R}^{2}$, the boundary ∂E of E is, by definition, the closure of E minus the interior of E.
a) Show that E is Lebesgue measurable whenever $m(\partial E)=0$.
b) Suppose that E is the union of a (possibly uncountable) collection of closed discs in \mathbf{R}^{2} whose radii are at least 1 and at most 2 . Use a) to show that E is Lebesgue measurable.
Hint. Observe that the density of the boundary points is always <1. On the other hand, if $m(\partial E)>0$, then the Lebesgue theorem gives 1 for almost all $x \in \partial E$.
c) Show that the conclusion of b) is true even when the radii are unrestricted.
d) Show that some unions of closed discs of radius 1 are not Borel sets.

Hint. What if all the discs touch the straight line?
4. Problem 4. Let f be periodic with the period 1 and Lebesgue integrable with respect to the Lebesgue measure on $[0,1]$. Define the Riemann sum

$$
f_{n}(x):=\frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right), \quad n \in \mathbf{N} .
$$

$\aleph)$ Prove that a sequence $\left(f_{2^{n}}(x)\right)_{n=1}^{\infty}$ converges almost everywhere to $A=\int_{0}^{1} f(x) d x$ by completing the following steps.
a) Assume that $f \geq 0$. Show that $s_{N} f(x):=\sup _{0 \leq n \leq N} f_{2^{n}}(x)$ is in weak type. More precisely, prove that

$$
\forall \lambda>0 \quad \lambda m\left(E_{\lambda}\right) \leq \int_{E_{\lambda}} f(x) d x, \quad E_{\lambda}:=\left\{x \in[0,1]: s_{N} f(x)>\lambda\right\} .
$$

Hint. Define $E_{n}:=\left\{x \in[0,1]: f_{2^{n}}(x)>\lambda\right\}, 0 \leq n \leq N, N \in \mathbf{N}$, and observe that $E_{\lambda}=\cup_{n=1}^{N} E_{n}=\cup_{n=1}^{N} A_{n}, \quad A_{N}:=E_{N}, \quad A_{n}:=E_{n} \backslash\left(\cup_{i=n+1}^{N} E_{i}\right), n=0, \ldots, N-1$, where A_{n} are disjoint. Prove that all A_{n} are periodic with period 2^{-n}, and conclude that

$$
\int_{A_{n}} f(x) d x=\int_{A_{n}} f_{2^{n}}(x) d x \geq \lambda m\left(A_{n}\right)
$$

This implies $\aleph)$.
b) Letting $N \rightarrow \infty$ prove that

$$
\lambda m\left(\left\{x \in[0,1]: \sup _{n \in\{0\} \cup \mathbf{N}} f_{2^{n}}(x)>\lambda\right\}\right) \leq \int_{0}^{1} f(x) d x
$$

c) Define $\Phi(x):=\varlimsup_{n \rightarrow \infty} f_{2^{n}}(x)$. Prove that Φ has arbitrary small periods, hence $\Phi(x)=$ const almost everywhere.

Hint. Use Problem 1, d) of Assignment XI.
d) Prove that $\Phi \leq A$ by taking any $\lambda<\Phi$. Conclude that $\Phi=A$.

Hint. Replace $f(x)$ by $-f(x)$.
$\beth)$ Show that in fact any sequence $\left(f_{m_{n}}(x)\right)_{n=1}^{\infty}$ converges to A almost everywhere, provided m_{n-1} divides m_{n}.
J) Find an integrable periodic function f such that a sequence of Riemann sums $\left(f_{n}(x)\right)_{n=1}^{\infty}$ diverges almost everywhere.
Hint. Assume (do not prove) that for every irrational x there are infinitely many integers n such that $|x-m / n|<1 / n^{2}$ for some integer m.
Fix $0<\alpha<1 / 2$. Take $f(x)=|x|^{-1+\alpha}$ for $|x| \leq 1 / 2$, and define $f(x)$ for all other x by periodicity. Then $f(x-m / n)>f\left(1 / n^{2}\right)=n^{2-2 \alpha}$, so $f_{n}(x)>n^{1-2 \alpha}$.

