## Real Analysis, Math 821.

## Instructor: Dmitry Ryabogin

## Assignment II.

1. Problem 1. Let $S$ be a collection of sets. Prove that there exists one and only one minimal ring $R(S)$, such that $S \subset R(S)$. (This, in particular, means that for any ring $R$ containing $S, R(S) \subset R)$.
Hint. Define $X:=\cup_{A \in S} A$, and consider $P(X)$ (the set of all subsets of $X$ ). Let $\Sigma$ be a collection of all rings containing $S$ and which are contained in $P(X)$. The intersection of all of these rings (elements of $\Sigma$ ) will be your minimal ring.
2. Problem 2*. Let $S$ be a subring. Prove that the minimal ring $R(S)$ is a collection of sets of the type $A=\cup_{k=1}^{n} A_{k}, A_{k} \in S$.
Hint. Prove by induction (and then use) the following statement.
Lemma. Let $A_{i}, A, i=1, \ldots, n$ belong to a subring $S, A_{i} \subset A$, and let $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Then there are sets $A_{n+1}, \ldots A_{s}$ belonging to $S$, such that $A=\cup_{k=1}^{s} A_{k}, s \geq n$.
3. Problem 3. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of sets. The set $\varlimsup_{n \rightarrow \infty} E_{n}:=\cap_{n=1}^{\infty}\left(\cup_{k=n}^{\infty} E_{k}\right)$ is called the upper limit of the sequence. The set $\underline{n \rightarrow \infty} \underset{n}{\lim } E_{n}:=\cup_{n=1}^{\infty}\left(\cap_{k=n}^{\infty} E_{k}\right)$ is called the lower limit of the sequence. Prove that $\underset{n \rightarrow \infty}{\lim _{n}} E_{n} \subseteq \varlimsup_{n \rightarrow \infty} E_{n}$. If they are equal, then their value (the set) is called a limit of sequence of sets.
4. Problem 4. Give an example of sets for which $\underset{n \rightarrow \infty}{\lim _{n}} E_{n} \neq \varlimsup_{n \rightarrow \infty} E_{n}$.
5. Problem 5. Let $X$ be a set, and let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of sets satisfying $E_{n} \subset X$ for $n=1, \ldots, \infty$. Prove

$$
X \backslash \varlimsup_{n \rightarrow \infty} E_{n}=\underline{\lim }_{n \rightarrow \infty}\left(X \backslash E_{n}\right) .
$$

6. Problem 6. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of sets and let $\left(1_{E_{n}}\right)_{n=1}^{\infty}(x)$ be a sequence of their characteristic functions. Prove that

$$
1_{\left\{\varlimsup_{n \rightarrow \infty} E_{n}\right\}}(x)=\varlimsup_{n \rightarrow \infty} 1_{E_{n}}(x), \quad 1_{\left\{\lim _{n \rightarrow \infty} E_{n}\right\}}(x)={\underset{n \rightarrow \infty}{ }}^{\lim _{n \rightarrow \infty}} 1_{E_{n}}(x) .
$$

