Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment II.

1. **Problem 1.** Let S be a collection of sets. Prove that there exists one and only one minimal ring $R(S)$, such that $S \subseteq R(S)$. (This, in particular, means that for any ring R containing S, $R(S) \subseteq R$).

 Hint. Define $X := \bigcup_{A \in S} A$, and consider $P(X)$ (the set of all subsets of X). Let Σ be a collection of all rings containing S and which are contained in $P(X)$. The intersection of all of these rings (elements of Σ) will be your minimal ring.

2. **Problem 2.** Let S be a subring. Prove that the minimal ring $R(S)$ is a collection of sets of the type $A = \bigcup_{k=1}^{s} A_k$, $A_k \in S$.

 Hint. Prove by induction (and then use) the following statement.

 Lemma. Let $A_i, A, i = 1, \ldots, n$ belong to a subring S, $A_i \subseteq A$, and let $A_i \cap A_j = \emptyset$ for $i \neq j$. Then there are sets A_{n+1}, \ldots, A_s belonging to S, such that $A = \bigcup_{k=1}^{s} A_k$, $s \geq n$.

3. **Problem 3.** Let $\left(E_n \right)_{n=1}^{\infty}$ be a sequence of sets. The set $\liminf_{n \to \infty} E_n := \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right)$ is called the upper limit of the sequence. The set $\limsup_{n \to \infty} E_n := \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$ is called the lower limit of the sequence. Prove that $\limsup_{n \to \infty} E_n \subseteq \liminf_{n \to \infty} E_n$. If they are equal, then their value (the set) is called a limit of sequence of sets.

4. **Problem 4.** Give an example of sets for which $\lim_{n \to \infty} E_n \neq \liminf_{n \to \infty} E_n$.

5. **Problem 5.** Let X be a set, and let $\left(E_n \right)_{n=1}^{\infty}$ be a sequence of sets satisfying $E_n \subseteq X$ for $n = 1, \ldots, \infty$. Prove

\[X \setminus \lim_{n \to \infty} E_n = \lim_{n \to \infty} \left(X \setminus E_n \right). \]

6. **Problem 6.** Let $\left(E_n \right)_{n=1}^{\infty}$ be a sequence of sets and let $\left(1_{E_n} \right)_{n=1}^{\infty}(x)$ be a sequence of their characteristic functions. Prove that

\[1_{\lim_{n \to \infty} E_n}(x) = \lim_{n \to \infty} 1_{E_n}(x), \quad 1_{\liminf_{n \to \infty} E_n}(x) = \lim_{n \to \infty} 1_{E_n}(x). \]