Real Analysis, Math 821.

Instructor: Dmitry Ryabogin
 Assignment III.

1. Problem 1.

Definition 1. Let $E:=[0,1] \times[0,1]$, and let $A \subset E$. The inner measure $\mu_{*}(A)$ (of A) is a number defined as

$$
\mu_{*}(A):=1-\mu^{*}(E \backslash A) .
$$

Prove that $\mu_{*}(A) \leq \mu^{*}(A)$.
Hint. $\quad \mu^{*}(E \backslash A)+\mu^{*}(A) \geq \mu^{*}(E)$.
2. Problem 2. Prove that $A \subseteq E$ is Lebesgue measurable if and only if $\mu_{*}(A)=\mu^{*}(A)$. Hint. Let $A \subseteq E$ be Lebesgue measurable. Then $\forall \epsilon>0$ there exists an elementary set B such that $\mu^{*}(A \triangle B)<\epsilon$. Prove that

$$
\mu^{*}(B)-\epsilon \leq \mu_{*}(A) \leq \mu^{*}(A) \leq \mu^{*}(B)+\epsilon
$$

Conversely, assume that $\mu_{*}(A)=\mu^{*}(A)$. Then prove the following chain of statements leading to the result.
a) $\forall \epsilon>0$ there exist elementary sets $P_{n}, Q_{n}, n=1,2, \ldots$, such that

$$
A \subset \cup_{n=1}^{\infty} P_{n}, \quad \mu^{*}(A) \geq \sum_{n=1}^{\infty} m^{\prime}\left(P_{n}\right)-\epsilon,
$$

and

$$
(E \backslash A) \subset \cup_{n=1}^{\infty} Q_{n}, \quad \mu^{*}(E \backslash A) \geq \sum_{n=1}^{\infty} m^{\prime}\left(Q_{n}\right)-\epsilon
$$

Conclude that

$$
\sum_{n=1}^{\infty}\left(m^{\prime}\left(P_{n}\right)+m^{\prime}\left(Q_{n}\right)\right) \leq 1+2 \epsilon
$$

and that there exists N such that

$$
\sum_{n=N+1}^{\infty}\left(m^{\prime}\left(P_{n}\right)+m^{\prime}\left(Q_{n}\right)\right)<\epsilon .
$$

b) Denote

$$
\cup_{n=1}^{\infty} P_{n}=P, \quad \cup_{n=1}^{\infty} Q_{n}=Q, \quad \cup_{n=1}^{N} P_{n}=P_{N} \quad \cup_{n=1}^{N} Q_{n}=Q_{N} .
$$

Observe that

$$
\mu^{*}\left(P_{N} \triangle A\right) \leq \mu^{*}\left(P_{N} \backslash A\right)+\mu^{*}\left(A \backslash P_{N}\right) .
$$

c) Prove that

$$
\mu^{*}\left(A \backslash P_{N}\right) \leq \sum_{n=N+1}^{\infty} m^{\prime}\left(P_{n}\right)
$$

d) Observe that

$$
P_{N} \backslash A \subset\left(P_{N} \cap Q_{N}\right) \cup\left(P_{N} \cap\left(Q \backslash Q_{n}\right)\right) \subset\left(P_{N} \cap Q_{N}\right) \cup\left(Q \backslash Q_{n}\right),
$$

and conclude

$$
\mu^{*}\left(P_{N} \backslash A\right) \leq \mu^{*}\left(P_{N} \cap Q_{N}\right)+\sum_{n=N+1}^{\infty} m^{\prime}\left(Q_{n}\right)
$$

e) Observe that $E \subseteq(P \cup Q)$, and show that

$$
1=\mu^{*}(E) \leq \mu^{*}\left(P_{N} \cup Q_{N}\right)+\mu^{*}\left(P \backslash P_{N}\right)+\mu^{*}\left(Q \backslash Q_{N}\right)
$$

Use the fact that for elementary sets C, D,

$$
m^{\prime}(C \cup D)=m^{\prime}(C)+m^{\prime}(D)-m^{\prime}(C \cap D)
$$

and a) to conclude that

$$
1 \leq \sum_{n=1}^{\infty}\left(m^{\prime}\left(P_{n}\right)+m^{\prime}\left(Q_{n}\right)\right)-\mu^{*}\left(P_{N} \cap Q_{N}\right) \leq 1+3 \epsilon-\mu^{*}\left(P_{N} \cap Q_{N}\right)
$$

and $\mu^{*}\left(P_{N} \cap Q_{N}\right) \leq 3 \epsilon$.
f) Use d) to show that

$$
\mu^{*}\left(P_{N} \backslash A\right) \leq 2 \epsilon+\sum_{n=N+1}^{\infty} m^{\prime}\left(Q_{n}\right)
$$

g) "Glue" pieces b), c), f) to obtain the desired result.
3. Problem 3. Prove that the capacity of all Lebesgue measurable sets is greater that continuum.
Hint. Consider $P(C)$ (the set of all subsets of the Cantor set).
4. Problem 4^{*}. Let $A \subset[0,1]$ be such that in the decimal decomposition of every $x \in A$ you meet 2 before you meet 3 . Find the Lebesgue measure of A.
Hint. This is "Cantor-like" exercise. Think first about numbers you would not like to have (go for the complement). At first take out of $[0,1]$ the set $[0.3,0.4]$. Then take out eight (why not nine?) sets of the type [$\left.0 . n_{1} 3,0 . n_{1} 4\right]$, where $n_{1}=0,1,4,5,6,7,8,9$, and so on...
5. Problem 5. Let $E=[0,1] \times[0,1]$ be a unit square in the plane, and let

$$
A:=\left\{(x, y) \in E:|\sin x|<\frac{1}{2}, \cos (x+y) \in \mathbf{R} \backslash \mathbf{Q}\right\}
$$

Find the Lebesgue measure of A.
Hint. What is the complement of A ?
6. Problem 6*. A set $A \subseteq E$ is called Caratheodory measurable if $\forall Z \subseteq E$ we have

$$
\mu^{*}(Z)=\mu^{*}(Z \cap A)+\mu^{*}(Z \backslash A)
$$

Prove that A is Caratheodory measurable if and only if it is Lebesgue measurable. Hint. Let A be Caratheodory measurable. Then by taking $Z=E$, we have

$$
\mu^{*}(E)=\mu^{*}(A)+\mu^{*}(E \backslash A)=\mu^{*}(A)+\mu_{*}(A)
$$

This gives (see Problem 2) the Lebesgue measurability of A.
Conversely, let A be Lebesgue measurable. Then $\forall Z \subseteq E$, we have

$$
\mu^{*}(Z) \leq \mu^{*}(Z \cap A)+\mu^{*}(Z \backslash A)
$$

and it remains to prove

$$
\mu^{*}(Z) \geq \mu^{*}(Z \cap A)+\mu^{*}(Z \backslash A)
$$

To this end, prove the following (important)
Lemma. $\forall Z \subseteq E$ there exists a Lebesgue measurable set Z_{1} such that $Z \subseteq Z_{1} \subseteq E$, and $\mu^{*}(Z)=\mu^{*}\left(Z_{1}\right)$.
Then conclude that

$$
\mu^{*}(Z)=\mu^{*}\left(Z_{1}\right)=\mu^{*}\left(Z_{1} \cap A\right)+\mu^{*}(Z \backslash A) \geq \mu^{*}(Z \cap A)+\mu^{*}(Z \backslash A)
$$

