Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment IV.

1. Problem 1.

Definition 1. A set $M \subset \mathbf{R}$ is called closed if it coincides with its closure. In other words, $M \subset \mathbf{R}$ is closed, if it contains all of its limit points.
Definition 2. A set $A \subset \mathbf{R}$ is called open if there is a closed set $M \subset \mathbf{R}$ such that $A=\mathbf{R} \backslash M$. In other words, A is open if all of its points are inner points, (a point x is called the inner point of a set A, if there exists $\epsilon>0$, such that the ϵ-neighbourhood $U_{\epsilon}(x)$ of x, is contained in $\left.A, U_{\epsilon}(x) \subset A\right)$.
Prove that any open set on the real line is a finite or infinite union of disjoint open intervals. (The sets $(-\infty, \infty),(\alpha, \infty),(-\infty, \beta)$ are intervals for us).
Hint. Let G be open on \mathbf{R}. Introduce in G the equivalence relationship, by saying that $x \sim y$ if there exists an interval (α, β), such that $x, y \in(\alpha, \beta) \subset G$.
a) Prove at first that this is indeed the equivalence relationship, i. e., that $x \sim x$, $x \sim y$ implies $y \sim x$, and $x \sim y, y \sim z$ imply $x \sim z$. Conclude that G can be written as a disjoint union $G=\cup_{\tau \in \beth} I_{\tau}$ of "classes" of points $I_{\tau}, I_{\tau}=\{x \in G: x \sim \tau\}$, \beth is the set of different indices, i.e. $\tau \in \beth$ if $I_{\tau} \cap I_{x}=\varnothing, \forall x \in G$.
b) Prove that each I_{τ} is an open interval.
c) Show that there are at most countably many I_{τ} (the set \beth is countable).

2. Problem 2.

Definition 3. A set $K \subset \mathbf{R}$ is called nowhere dense in \mathbf{R}, if for any open interval (α, β) there exists an open interval $(\gamma, \delta) \subset(\alpha, \beta)$, such that $K \cap(\gamma, \delta)=\varnothing$.
a) Prove that a closed set $K \subset \mathbf{R}$ is nowhere dense, if and only if for any interval (α, β) there exists a point $x \in(\alpha, \beta) \backslash K$.
b) Prove that the Cantor set is nowhere dense in \mathbf{R}.
c) Let B be an open dense (the closure of B is \mathbf{R}) subset of the real line. Is it true that $\mathbf{R} \backslash B$ is nowhere dense?
d) Let D be a dense subset of the real line. Is it true that $\mathbf{R} \backslash D$ is nowhere dense?
e) Prove that the closure of a nowhere dense set is nowhere dense.
3. Problem 3. a) Let $\left(r_{k}\right)_{k=1}^{\infty}$ be a sequence of all rational numbers on the real line, and let $v_{k}=\left(r_{k}-k^{-2}, r_{k}+k^{-2}\right)$. Prove that $E:=\mathbf{R} \backslash\left(\cup_{k=1}^{\infty} v_{k}\right)$ is closed and nowhere dense.

Definition 3. A set $K \subset \mathbf{R}$ is called of first category if it is a countable union of nowhere dense sets.
b) Prove that no interval in \mathbf{R} is of the first category.

Hint. Our statement is an obvious consequence of the following
Lemma. The complement of any set A of the first category on the line is dense.
To prove the Lemma you could argue as follows. Let $A=\cup_{i=1}^{\infty} A_{i}$, where A_{i} are nowhere dense. Let I be any interval on the real line, and let I_{1} be a closed subinterval of $I \backslash A_{1}$, I_{2} be a closed subinterval of $I_{1} \backslash A_{2}$, and so on. Show that

$$
\varnothing \neq \cap_{n=1}^{\infty} \subset(I \backslash A) .
$$

c)* Prove that \mathbf{R} can be written as a disjoint union of $A \cup(\mathbf{R} \backslash A)$, where $|A|=0$, and $\mathbf{R} \backslash A$ is of first category.
Hint. Let $\left(r_{k}\right)_{k=1}^{\infty}$ be a sequence of all rational numbers on the real line, and let $I_{k j}=\left(r_{k}-2^{-k-j}, r_{k}+2^{-k-j}\right)$. Define

$$
G_{j}:=\cup_{k=1}^{\infty} I_{k j}, \quad A:=\cap_{j=1}^{\infty} G_{j} .
$$

Show that $|A|<\epsilon, \forall \epsilon>0$. On the other hand, G_{j} is open (why?) and dense (why?), hence $\mathbf{R} \backslash G_{j}$ is nowhere dense (Problem 2, c)).

4. Problem 4.

Definition 4. A set $M \subset \mathbf{R}$ is called perfect, if it is closed, bounded, and has no isolated points. Any closed interval is perfect. Cantor set is perfect (why?). A set containing two different points is not perfect.
a) Prove that M is perfect if and only if disjoint intervals from $\mathbf{R} \backslash M$ do not have "common ends" (intervals $(a, b),(b, c)$ have common ends, intervals $(a, b),(c, d), b<c$, do not have).
b) Construct a nonempty perfect nowhere dense susbset of $\mathbf{R} \backslash \mathbf{Q}$.

Hint. Let $\left(r_{k}\right)_{k=1}^{\infty}$ be a sequence of all rational numbers on the real line. Take r_{1}, and let ϵ_{1} be any irrational number. Define $I_{1}:=U_{\epsilon_{1}}\left(r_{1}\right)$. Now take the first point from $\left(r_{k}\right)_{k=2}^{\infty} \backslash I_{1}$. Let it be $r_{k_{2}}$. Observe that $r_{k_{2}} \neq r_{1} \pm \epsilon_{1}$ (why?). Now take $\epsilon_{2} \in \mathbf{R} \backslash \mathbf{Q}$ such that $U_{\epsilon_{2}}\left(r_{k_{2}}\right) \cap I_{1}=\varnothing$, and such that $U_{\epsilon_{2}}\left(r_{k_{2}}\right), I_{1}$ have no common ends. Define $I_{2}:=U_{\epsilon_{2}}\left(r_{k_{2}}\right)$. On the next step find among $r_{k_{2}+1}, r_{k_{2}+2}, \ldots$, the first point out of $I_{1} \cup I_{2}$. Let it be $r_{k_{3}}$. Observe that $r_{k_{3}} \neq r_{1} \pm \epsilon_{1}, r_{k_{3}} \neq r_{k_{2}} \pm \epsilon_{2}$. Now find $\epsilon_{3} \in \mathbf{R} \backslash \mathbf{Q}$ such that $U_{\epsilon_{3}}\left(r_{k_{3}}\right) \cap I_{1}, I_{2}=\varnothing$, and such that $U_{\epsilon_{3}}\left(r_{k_{3}}\right), I_{1}, I_{2}$ have no common ends. Define $I_{3}:=U_{\epsilon_{3}}\left(r_{k_{3}}\right)$.
Continue this way to obtain a sequence $\left(I_{k}\right)_{k=1}^{\infty}$. Then $E:=\mathbf{R} \backslash\left(\cup_{k=1}^{\infty} I_{k}\right)$ is the set you are looking for. Prove that E is closed. Prove that $E \neq \varnothing$. Prove that E does not contain isolated points. Prove that E does not contain any rational point. Finally, prove that E is nowhere dense (use the closeness of E and Problem 2, a)).
5. Problem 5. a) Is it possible to construct a countable family $\left(E_{i}\right)_{i=1}^{\infty}$ of perfect nowhere dense sets $E_{i} \subset[a, b]$ such that $\left|\cup_{i=1}^{\infty} E_{i}\right|=b-a$?

Hint. Take $E_{i} \subset[a, b]$, such that $\left|E_{i}\right|=b-a-1 / i$, and E_{i} is perfect and nowhere dense (how to construct these sets?). To show that $\cup_{i=1}^{\infty} E_{i}$ satisfies the requirements of the problem define $A_{i}:=\cup_{k=1}^{i} E_{i}$, and observe that $\cup_{i=1}^{\infty} E_{i}=\cup_{i=1}^{\infty} A_{i}$.
b) ${ }^{*}$ Is it possible to construct a countable family $\left(E_{i}\right)_{i=1}^{\infty}$ of pairwise disjoint perfect nowhere dense sets $E_{i} \subset[a, b]$ such that $\left|\cup_{i=1}^{\infty} E_{i}\right| \equiv \sum_{i=1}^{\infty}\left|E_{i}\right|=b-a$?
Hint. Consider the case $[a, b]=[0,1]$. Construct a perfect nowhere dense set $E_{1} \subset$ $[0,1]$, such that $\left|E_{1}\right|=1 / 2$. Take any $\left(a_{1, i}, b_{1, i}\right) \subset\left([0,1] \backslash E_{1}\right)$ and put there a perfect nowhere dense set $E_{1, i} \subset\left(a_{1, i}, b_{1, i}\right)$, such that $\left|E_{1, i}\right|=\left(b_{1, i}-a_{1, i}\right) / 2$. Then $\left|\cup_{i=1}^{\infty} E_{1, i}\right|=$ $1 / 2^{2}$. Observe that $E_{2}:=E_{1} \cup\left(\cup_{i=1}^{\infty} E_{1, i}\right)$ is perfect and nowhere dense, moreover, $\left|E_{2}\right|=3 / 4$.

Take any $\left(a_{2, i}, b_{2, i}\right) \subset\left([0,1] \backslash E_{2}\right)$ and put there a perfect nowhere dense set $E_{2, i} \subset$ $\left(a_{2, i}, b_{2, i}\right)$, such that $\left|E_{2, i}\right|=\left(b_{2, i}-a_{2, i}\right) / 2$. Then $\left|\cup_{i=1}^{\infty} E_{2, i}\right|=1 / 2^{3}$. Observe that $E_{3}:=E_{2} \cup\left(\cup_{i=1}^{\infty} E_{2, i}\right)$ is perfect and nowhere dense, moreover, $\left|E_{3}\right|=1-1 / 2^{3}$.
Continue this way, and get a sequence of perfect nowhere dense sets

$$
\begin{gathered}
E_{1} ; \quad E_{1,1}, E_{1,2}, E_{1,3}, \ldots, E_{1, i}, \ldots ; \quad E_{2,1}, E_{2,2}, E_{2,3}, \ldots, E_{2, i}, \ldots ; \\
E_{k, 1}, E_{k, 2}, E_{k, 3}, \ldots, E_{k, i}, \ldots ; \ldots
\end{gathered}
$$

Observe that all of them are disjoint, and make the desired conclusion.

