Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment V.

1. **Problem 1.** Let $E = [0, 1] \times [0, 1] \subset \mathbf{R}^2$, and let S be a subring of rectangles of type $T_{ab} := \{a \le x < b, 0 \le y \le 1\}$. Define $m(T_{ab}) := b - a$.

a) Describe the Lebesgue continuation of this measure. What sets are going to be measurable?

b) Prove that $\tilde{T} := \{ 0 \le x \le 1, y = 1/2 \}$ is not measurable, and find its outer measure.

Hint. The set is Lebesgue measurable if and only if its outer measure is equal to its inner measure.

2. Problem 2.

Definition 1. Let U be a collection of all open subsets of the real line. Then R(U) is called **Borel sets** (the minimal ring containing U).

Prove that any Lebesgue measurable set on the real line is a union of a Borel set and a set of measure zero.

Hint. Let $A \subset \mathbf{R}$ be measurable. According to Assignment III, Problem 2, $\forall \epsilon > 0$, there exists a closed set $B_{\epsilon} \subset A$ such that $\mu^*(A \setminus B_{\epsilon}) < \epsilon$. The set you are looking for is $\bigcup_{n=1}^{\infty} B_{1/n}$.

3. Problem 3.

Definition 2. We say that a measure μ (defined on a corresponding subring S) is invariant under the transformation $\mathbf{T}: S \to S$ if

$$\forall A \in S, \qquad \mu(\mathbf{T}^{-1}(A)) \equiv \mu(A).$$

a) It is known (take it as granted) that a real number $x \in [0, 1]$ can be written as a continuous fraction

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \dots}}, \qquad n_k \in \mathbf{N},$$

where a rational number can be written as a finite fraction, and an irrational number as an infinite one. Define the transformation \mathbf{T} on [0,1] as $\mathbf{T} := \{1/x\}$, where $\{\cdot\}$ stands for the fractional part of a number. Prove that (in terms of sequences $(n_k)_{k=1}^{\infty}$), \mathbf{T} has the form $\mathbf{T}((n_k)_{k=1}^{\infty}) = (n_{k+1})_{k=1}^{\infty}$.

b) Let μ be a measure on [0, 1], defined as

$$\mu([\alpha,\beta)) := \log_2 \frac{1+\beta}{1+\alpha}.$$

Prove that μ is invariant under **T** defined in a).

- 4. **Problem 4.** Let *m* be a measure on a subring *S*, and let μ be its extension to R(S). Prove that the following statements are equivalent for μ , and might be not equivalent for *m*.
 - \aleph) σ -additivity.

$$\mu\Big(\cup_{k=1}^{\infty} A_k\Big) = \sum_{k=1}^{\infty} \mu(A_k);$$

 \beth) upper semicontinuity.

 $A_1 \supset A_2 \supset A_3 \supset \dots, \qquad A = \cap_{k=1}^{\infty} A_k, \qquad \Rightarrow \qquad \mu(A) = \lim_{k \to \infty} \mu(A_k);$

 \exists) lower semicontinuity.

$$A_1 \subset A_2 \subset A_3 \subset \dots, \qquad A = \bigcup_{k=1}^{\infty} A_k, \qquad \Rightarrow \qquad \mu(A) = \lim_{k \to \infty} \mu(A_k);$$

\neg) continuity.

$$\mu(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} \mu(A_k).$$

Hint. Prove that \aleph) $\iff \square$), \aleph) \iff \square), \neg) \Rightarrow \aleph). Prove that \square), \square) imply

$$\mu(\overline{\lim_{n \to \infty}} A_n) = \mu(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n) = \lim_{k \to \infty} \mu(\bigcup_{n=k}^{\infty} A_n) \ge \overline{\lim_{k \to \infty}} \mu(A_k),$$
$$\mu(\underline{\lim_{n \to \infty}} A_n) = \mu(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n) = \lim_{k \to \infty} \mu(\bigcap_{n=k}^{\infty} A_n) \le \underline{\lim_{n \to \infty}} \mu(A_k).$$

This will give you \aleph) $\iff \neg$).

Moreover, consider the following example of a measure, which is not σ -additive. Take a subring S of subsets of $[0, 1) \cap \mathbf{Q}$, and define

$$S := \{ s_{a,b} := [a,b) \cap [0,1) \cap \mathbf{Q} \}, \qquad m(s_{a,b}) = b - a.$$

Prove that for m, \exists) and \exists) are true, but \aleph) and \exists are not. On the other hand for the extension μ of m, all \aleph), \exists), \exists), \exists) are not true (they are equivalent).

5. **Problem 5.**

Definition 3. A pair (X, d) is called a **metric space**, if X is a **set**, and d is a **distance**. More precisely, d is a nonnegative real function d(x, y) defined for any $x, y \in X$, and satisfying

1) $d(x,y) = 0 \iff x = y$,

2) d(x,y) = d(y,x) (the axiom of symmetry)

3) $d(x,z) \le d(x,y) + d(y,z)$ (the axiom of triangle).

Let μ be a σ -additive measure on a subring $S \subset P(X)$, and let μ^* be the corresponding outer measure on P(X).

a) We say that $A \sim B$ if $\mu^*(A \triangle B) = 0$. Prove that this is an equivalence relation.

b) Let \tilde{X} be a set of all classes \tilde{A} of equivalence. Prove that (\tilde{X}, d) is a metric space, where $d(\tilde{A}, \tilde{B}) := \mu^*(A \triangle B)$. Here \tilde{A}, \tilde{B} are classes of equivalence containing A, B.

- 6. Problem 6. Is it possible to construct a set $G \subset [0, 1]$ such that
 - $\aleph) \ G \ \text{is dense on} \ [0,1],$
 - \beth) G has measure (length) zero,
 - **]**) G is not countable?

Hint. Consider $G := [0,1] \setminus E$, where E is a union of sets E_i constructed in the previous Assignment, Problem 5, b)*.