Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment VI.

1. Problem 1.

a) Let $f : \mathbf{R}^{\mathbf{n}} \to \mathbf{R}$ be a continuous function, and let $g_1(x), g_2(x), ..., g_n(x)$ be measurable functions (defined on some space X). Prove that $h(x) := f(g_1(x), g_2(x), ..., g_n(x))$ is measurable.

Hint. The set $\{(t_1, ..., t_n) \in \mathbf{R}^n : f(t_1, ..., t_n) > a\}$ can be written as a union of open sets of the type $(a_{k1}, b_{k1}) \times ... \times (a_{kn}, b_{kn}), k = 1, 2, ...$ Then

$$\{x \in \mathbf{R}^{\mathbf{n}} : h(x) > a\} = \bigcup_{k=1}^{\infty} \bigcap_{i=1}^{n} \{x \in \mathbf{R} : a_{ki} < x < b_{ki}\}.$$

b) A function $f: X \to \mathbf{C}$, f(x) = u(x) + iv(x), is called measurable if u(x), v(x) are measurable. Prove that |f(x)|, and $\arg f(x)$ are measurable.

c) A vector-function $f : X \to \mathbf{R}^{\mathbf{n}}$ is called measurable if the coordinate functions $(f_1(x), f_2(x), ..., f_n(x))$ of the vector f(x) are measurable with respect to some **fixed** basis in $\mathbf{R}^{\mathbf{n}}$. Prove that this definition does not depend on the choice of the basis.

d) Let $f : X \to \mathbf{R}$. Describe $a \in \mathbf{R}$ such that measurability of $f(x)^a$ implies the measurability of f(x).

2. Problem 2.

a) Let f(x) be a differentiable function on [0, 1]. Prove that f'(x) is measurable.

b) Let $(f_n(x))_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that $\sup_n f_n(x)$, $\inf_n f_n(x)$ are measurable.

c) Let $(f_n(x))_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that $\overline{\lim_n} f_n(x)$, $\underline{\lim_n} f_n(x)$ are measurable.

3. Problem 3.

a)* Let f(x) be continuous on [0, 1], and let $N_f(c)$ be a function, (called **the indicator** of **Banach**), defined as a number (possibly infinite) of solutions of the equation f(x) = c. Prove that N_f is measurable.

Hint. For each $n \in \mathbf{N}$ divide [0, 1] into segments $[(j - 1)2^{-n}, j2^{-n}], j = 1, 2, ..., 2^n$, and define $N_n(c)$ as a number of segments $[(j - 1)2^{-n}, j2^{-n}]$ containing **at least one** solution f(x) = c. Show that functions $N_n(c)$ are measurable, and prove that $N_f(c) = \lim_{n \to \infty} N_n(c)$.

b) Let f(x) be a one-to-one mapping of [0,1] onto $[0,1] \times [0,1]$ defined as follows: let $x = x_1, x_2, x_3, \dots x_n, \dots \in [0,1]$ be binary-irrational (this means that among x_i we have infinitely many 0 and 1). Then, $f(x) := (y_1, y_2)$, where $y_1 = (x_1, x_3, x_5, \dots)$, and $y_2 = (x_2, x_4, x_6, ...)$. For binary-rational numbers choose one way of writing them in terms of 0 and 1, and define f the same way.

Prove that f is Lebesgue measurable and preserves the measure (if $B \subset [0, 1] \times [0, 1]$ is Lebesgue measurable, then $f^{-1}(B)$ is Lebesgue measurable on [0, 1], and $M(B) \equiv m(f^{-1}(B))$, where m is Lebesgue measure on [0, 1], and M is Lebesgue measure on $[0, 1] \times [0, 1]$).

c) Let $x = 0, n_1 n_2 n_3, ..., y = 0, m_1 m_2 m_3, ...,$ decimal decompositions of $x, y \in [0, 1]$. Define f(x, y) = k provided $n_k = m_k$ and $n_i \neq m_i$ for i < k; $f(x, y) = \infty$ provided $n_k \neq m_k$ for all k. Prove that f is Lebesgue measurable and finite almost everywhere.

4. Problem 4.

a) Let $f_n \to f$ and $f_n \to g$ almost everywhere as $n \to \infty$. Prove that f is equivalent to g.

b) Let $(r_k)_{k=1}^{\infty}$ be a sequence of rationals from [0, 1], and let $r_k = p_k/q_k$ be irreducible fraction. Define $f_k(x) := \exp\{-(p_k - xq_k)^2\}$. Prove that $f_k \to 0$ as $k \to \infty$ in measure, but $\lim_{k\to\infty}$ does not exist at any point $x \in [0, 1]$.

Hint. To show that the pointwise limit does not exist proceed as follows. Take any $x \in [0, 1]$ and consider a sequence $(r_{k_n})_{n=1}^{\infty}$ such that $\lim_{n \to \infty} r_{k_n}$ exists and not equal to x. Then show that $f_{k_n}(x) \to 0$. On the other hand, there exists a sequence $(r_{k'_n})_{n=1}^{\infty}$ such that $|p_{k'_n}/q_{k'_n} - x| \leq 1/q_{k'_n}$. Prove that $f_{k'_n}(x) \geq e^{-1}$.

c) Write out a subsequence $(k_l)_{l=1}^{\infty}$ such that $\lim_{l\to\infty} f_{k_l}(x) = 0$ almost everywhere.

5. Problem 5*. We saw in class that

$$D(x) = \lim_{n \to \infty} \lim_{m \to \infty} (\cos(2\pi n! x))^m$$

where D(x) is the Dirichlet function (taking 0 at irrationals, and 1 at rationals).

a) Prove that you may not write $D(x) = \lim_{n \to \infty} \varphi_n(x)$ where $\varphi_n(x)$ continuous functions.

Hint. Let $F_n := \{x \in \mathbf{R} : \varphi_n(x) \le 1/2\}$. Then $\{x \in \mathbf{R} : D(x) < 1/2\} = \lim_{n \to \infty} F_n$. But this contradicts the fact that irrationals may not be written as a countable union of closed sets.

b) Conclude that it is impossible to define a metric d on the space X of all functions $f : \mathbf{R} \to \mathbf{R}$ such that the convergence in d would be equivalent to the pointwise convergence.

Hint. Assume the contrary, we have a metric d, such that $f_n(x) \to f(x)$ pointwise is the same as $d(f_n, f) \to 0$ as $n \to \infty$. Let $(g_m(x))_{m=1}^{\infty}$, $(f_{m,n}(x))_{m,n=1}^{\infty}$ be such that $d(f_{m,n}, g_m) \to 0$ as $n \to \infty$, and $d(g, g_m) \to 0$ as $m \to \infty$. But then $\forall m \in \mathbf{N}$ there exists $n(m) \in \mathbf{N}$ such that $d(f_{m,n(m)}, g) \to 0$ (use the diagonal process of Cantor). This contradicts a) (why?).