Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment VI.

1. Problem 1.

a) Let $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$ be a continuous function, and let $g_{1}(x), g_{2}(x), \ldots, g_{n}(x)$ be measurable functions (defined on some space X). Prove that $h(x):=f\left(g_{1}(x), g_{2}(x), \ldots, g_{n}(x)\right)$ is measurable.

Hint. The set $\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}^{\mathbf{n}}: f\left(t_{1}, \ldots, t_{n}\right)>a\right\}$ can be written as a union of open sets of the type $\left(a_{k 1}, b_{k 1}\right) \times \ldots \times\left(a_{k n}, b_{k n}\right), k=1,2, \ldots$ Then

$$
\left\{x \in \mathbf{R}^{\mathbf{n}}: h(x)>a\right\}=\cup_{k=1}^{\infty} \cap_{i=1}^{n}\left\{x \in \mathbf{R}: a_{k i}<x<b_{k i}\right\} .
$$

b) A function $f: X \rightarrow \mathbf{C}, f(x)=u(x)+i v(x)$, is called measurable if $u(x), v(x)$ are measurable. Prove that $|f(x)|$, and $\arg f(x)$ are measurable.
c) A vector-function $f: X \rightarrow \mathbf{R}^{\mathbf{n}}$ is called measurable if the coordinate functions $\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$ of the vector $f(x)$ are measurable with respect to some fixed basis in $\mathbf{R}^{\mathbf{n}}$. Prove that this definition does not depend on the choice of the basis.
d) Let $f: X \rightarrow \mathbf{R}$. Describe $a \in \mathbf{R}$ such that measurability of $f(x)^{a}$ implies the measurability of $f(x)$.

2. Problem 2.

a) Let $f(x)$ be a differentiable function on $[0,1]$. Prove that $f^{\prime}(x)$ is measurable.
b) Let $\left(f_{n}(x)\right)_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that $\sup _{n} f_{n}(x), \inf _{n} f_{n}(x)$ are measurable.
c) Let $\left(f_{n}(x)\right)_{n=1}^{\infty}$ be a sequence of measurable functions. Prove that $\varlimsup_{n} f_{n}(x),{\underset{n}{n}}_{\lim } f_{n}(x)$ are measurable.

3. Problem 3.

a)* Let $f(x)$ be continuous on $[0,1]$, and let $N_{f}(c)$ be a function, (called the indicator of Banach), defined as a number (possibly infinite) of solutions of the equation $f(x)=$ c. Prove that N_{f} is measurable.
Hint. For each $n \in \mathbf{N}$ divide $[0,1]$ into segments $\left[(j-1) 2^{-n}, j 2^{-n}\right], j=1,2, \ldots, 2^{n}$, and define $N_{n}(c)$ as a number of segments $\left[(j-1) 2^{-n}, j 2^{-n}\right]$ containing at least one solution $f(x)=c$. Show that functions $N_{n}(c)$ are measurable, and prove that $N_{f}(c)=$ $\lim _{n \rightarrow \infty} N_{n}(c)$.
b) Let $f(x)$ be a one-to-one mapping of $[0,1]$ onto $[0,1] \times[0,1]$ defined as follows: let $x=x_{1}, x_{2}, x_{3}, \ldots x_{n}, \ldots \in[0,1]$ be binary-irrational (this means that among x_{i} we have infinitely many 0 and 1). Then, $f(x):=\left(y_{1}, y_{2}\right)$, where $y_{1}=\left(x_{1}, x_{3}, x_{5}, \ldots\right)$, and
$y_{2}=\left(x_{2}, x_{4}, x_{6}, \ldots\right)$. For binary-rational numbers choose one way of writing them in terms of 0 and 1 , and define f the same way.
Prove that f is Lebesgue measurable and preserves the measure (if $B \subset[0,1] \times[0,1]$ is Lebesgue measurable, then $f^{-1}(B)$ is Lebesgue measurable on $[0,1]$, and $M(B) \equiv$ $m\left(f^{-1}(B)\right)$, where m is Lebesgue measure on $[0,1]$, and M is Lebesgue measure on $[0,1] \times[0,1])$.
c) Let $x=0, n_{1} n_{2} n_{3}, \ldots, y=0, m_{1} m_{2} m_{3}, \ldots$, decimal decompostions of $x, y \in[0,1]$. Define $f(x, y)=k$ provided $n_{k}=m_{k}$ and $n_{i} \neq m_{i}$ for $i<k ; f(x, y)=\infty$ provided $n_{k} \neq m_{k}$ for all k. Prove that f is Lebesgue measurable and finite almost everywhere.

4. Problem 4.

a) Let $f_{n} \rightarrow f$ and $f_{n} \rightarrow g$ almost everywhere as $n \rightarrow \infty$. Prove that f is equivalent to g.
b) Let $\left(r_{k}\right)_{k=1}^{\infty}$ be a sequence of rationals from $[0,1]$, and let $r_{k}=p_{k} / q_{k}$ be irreducible fraction. Define $f_{k}(x):=\exp \left\{-\left(p_{k}-x q_{k}\right)^{2}\right\}$. Prove that $f_{k} \rightarrow 0$ as $k \rightarrow \infty$ in measure, but $\lim _{k \rightarrow \infty}$ does not exist at any point $x \in[0,1]$.
Hint. To show that the pointwise limit does not exist proceed as follows. Take any $x \in[0,1]$ and consider a sequence $\left(r_{k_{n}}\right)_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} r_{k_{n}}$ exists and not equal to x. Then show that $f_{k_{n}}(x) \rightarrow 0$. On the other hand, there exists a sequence $\left(r_{k_{n}^{\prime} n}\right)_{n=1}^{\infty}$ such that $\left|p_{k^{\prime} n} / q_{k^{\prime} n}-x\right| \leq 1 / q_{k^{\prime} n}$. Prove that $f_{k_{n}^{\prime}}(x) \geq e^{-1}$.
c) Write out a subsequence $\left(k_{l}\right)_{l=1}^{\infty}$ such that $\lim _{l \rightarrow \infty} f_{k_{l}}(x)=0$ almost everywhere.
5. Problem 5*. We saw in class that

$$
D(x)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}(\cos (2 \pi n!x))^{m}
$$

where $D(x)$ is the Dirichlet function (taking 0 at irrationals, and 1 at rationals).
a) Prove that you may not write $D(x)=\lim _{n \rightarrow \infty} \varphi_{n}(x)$ where $\varphi_{n}(x)$ continuous functions. Hint. Let $F_{n}:=\left\{x \in \mathbf{R}: \varphi_{n}(x) \leq 1 / 2\right\}$. Then $\{x \in \mathbf{R}: D(x)<1 / 2\}=\underline{\underline{l}}_{n \rightarrow \infty} F_{n}$. But this contradicts the fact that irrationals may not be written as a countable union of closed sets.
b) Conclude that it is impossible to define a metric d on the space X of all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that the convergence in d would be equivalent to the pointwise convergence.

Hint. Assume the contrary, we have a metric d, such that $f_{n}(x) \rightarrow f(x)$ pointwise is the same as $d\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $\left(g_{m}(x)\right)_{m=1}^{\infty},\left(f_{m, n}(x)\right)_{m, n=1}^{\infty}$ be such that $d\left(f_{m, n}, g_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$, and $d\left(g, g_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. But then $\forall m \in \mathbf{N}$ there exists $n(m) \in \mathbf{N}$ such that $d\left(f_{m, n(m)}, g\right) \rightarrow 0$ (use the diagonal process of Cantor). This contradicts a) (why?).

