Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment VII.

1. Problem 1.

a) Compute the Lebesgue integral (with respect to usual Lebesgue measure) over $(0,+\infty)$ from the following functions
א) $f(x)=e^{-[x]}$,
ב) $f(x)=1 /([x+1][x+2])$,
]) $1 /[x]$!.
Here $[x]$ stands for the integer part of x.
b) Find the set of values of α, β, such that $f(x):=x^{\alpha} \sin x^{\beta}, x \in(0,1]$,
$\aleph)$ is Lebesgue integrable,
$\beth)$ is "improper" Riemann integrable, i.e. there exists a limit $\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} f(x) d x$.
c) Compute the Lebesgue integral over $[0, \pi / 2]$ from the following functions

א) $f(x)=\sin x$,
ב) $f(x)=\sin x$ for $x \in \mathbf{Q}$, and $f(x)=\cos x$ for $x \in \mathbf{R} \backslash \mathbf{Q}$,
I) $f(x)=\sin x$ for $\cos x \in \mathbf{Q}$, and $f(x)=\sin ^{2} x$ for $\cos x \in \mathbf{R} \backslash \mathbf{Q}$.
2. Problem 2. a) Let φ be an increasing smooth function on $[a, b]$, and let ψ be its inverse on $[\varphi(a), \varphi(b)]$. Prove that

$$
\int_{a}^{b} \varphi(x) d x=\int_{\varphi(a)}^{\varphi(b)} y \psi^{\prime}(y) d y
$$

where the integral is understood as a limit of Lebesgue integral sums.
b) Let $f(x) \geq 0$ on $[a, b]$, and let m be Lebesgue measure on \mathbf{R}^{2}. Prove that

$$
\int_{a}^{b} f(x) d x=m(\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\})
$$

c) Let $X: \mu(X)<\infty$, and let $f \geq 0$ on X. Prove that f is Lebesgue integrable on X if and only if

$$
\sum_{n=0}^{\infty} 2^{n} \mu\left(\left\{x \in X: f(x) \geq 2^{n}\right\}\right)<\infty
$$

3. Problem 3. Let $x \in[0,1]$ be written as ternary fraction $x=\sum_{i=1}^{\infty} \alpha_{i} / 3^{i}$, where $\alpha_{i}=$ $0,1,2$. Assume also that $k(x)$ is the smallest index in this representation for which $\alpha_{k}=1$, (if $\alpha_{i} \neq 1$ then $\left.k(x)=\infty\right)$. Define

$$
c(x):=\sum_{i=1}^{k-1} \frac{\alpha_{i}}{2^{i+1}}+\frac{1}{2^{k}} .
$$

Observe that $c(x)$ does not depend on the choice of the ternary representation of x. The function $c(x)$ is called the Cantor ladder, and it is continuous and monotonic (why?). (Observe that $c(x)$ is constant on every interval complement to the Cantor set, and is taking values $1 / 2^{k}, 3 / 2^{k}, 5 / 2^{k}, \ldots,\left(2^{k}-1\right) / 2^{k}$ on complemental intervals of the k-th rank).

Compute the following integrals with respect to the measure c (for simplicity I denote it by the same letter), defined on a subring of sets $[a, b) \subset[0,1]$ as $c([a, b))=c(b)-c(a)$. (It does not really matter here whether we take open, closed, half-open, or half-closed intervals because the function c is continuous).
๗) $\int_{0}^{1} x^{k} d c(x)$,

】) $\int_{0}^{1} e^{x} d c(x)$,
J) $\int_{0}^{1} \sin (\pi x) d c(x)$.

Hint. $c(x / 3)=1 / 2 c(x), c(2 / 3+x / 3)=1 / 2+1 / 2 c(x)$. Thus,

$$
\begin{gathered}
a_{k}:=\int_{0}^{1} x^{k} d c(x)=\int_{0}^{1 / 3} x^{k} d c(x)+\int_{2 / 3}^{1} x^{k} d c(x)=\frac{1}{2 \cdot 3^{k}}\left(\int_{0}^{1} y^{k} d c(y)+\int_{0}^{1}(2+y)^{k} d c(y)\right)=\ldots, \\
\Psi(a):=\int_{0}^{1} e^{a x} d c(x)=\int_{0}^{1 / 3} e^{a x} d c(x)+\int_{2 / 3}^{1} e^{a x} d c(x)=\ldots
\end{gathered}
$$

4. Problem 4. Prove the Lebesgue criterion of the Riemann integrability: a bounded f is Riemann integrable on $[0,1]$ iff it is continuous on $[0,1]$ almost everywhere.

Hint. Define $m(x)=\lim _{\delta \rightarrow+0} m_{\delta}(x), M(x)=\lim _{\delta \rightarrow+0} M_{\delta}(x)$, where

$$
m_{\delta}(x)=\inf _{x-\delta<y<x+\delta} f(y), \quad M_{\delta}(x)=\sup _{x-\delta<y<x+\delta} f(y) .
$$

a) Take a sequence of partions of $[0,1]$

$$
0=x_{0}^{1}<x_{1}^{1}<\ldots<x_{n_{1}}^{1}=1, \quad \ldots, \quad 0=x_{0}^{i}<x_{1}^{i}<\ldots<x_{n_{i}}^{i}=1, \quad \ldots,
$$

such that $\lambda_{i}:=\max \left(x_{k+1}^{i}-x_{k}^{i}\right) \rightarrow 0$, as $i \rightarrow \infty$, and define $m_{k}^{i}:=\inf _{\left[x_{k+1}^{i}, x_{k}^{i}\right]} f(x)$. Prove that $\lim _{i \rightarrow \infty} \varphi_{i}(x)=m(x)$ almost everywhere, where

$$
\varphi_{i}(x)=m_{k}^{i} \quad \text { for } \quad x \in\left(x_{k}^{i}, x_{k+1}^{i}\right), \quad \varphi_{i}(x)=0 \quad \text { for } \quad x=x_{0}^{i}, x_{1}^{i}, \ldots, x_{n_{i}}^{i} .
$$

b) Prove that

$$
\lim _{i \rightarrow \infty} \int_{0}^{1} \varphi_{i}(x) d x=\int_{0}^{1} m(x) d x
$$

and that the corresponding result is true for M.
c) Let s_{i}, S_{i} denote the upper and the lower Darbour sums for the integral of Riemann. Observe that (use the Lebesgue theorem on dominated convergence)

$$
\begin{aligned}
& \int_{0}^{1} \varphi_{i}(x) d x=\sum_{k=0}^{n_{i}-1} \int_{x_{k}^{i}}^{x_{k+1}^{i}} \varphi_{i}(x) d x=\sum_{k=0}^{n_{i}-1} m_{k}^{i}\left(x_{k+1}^{i}-x_{k}^{i}\right)=s_{i}, \\
& \int_{0}^{1} \widehat{\varphi}_{i}(x) d x=\sum_{k=0}^{n_{i}-1} \int_{x_{k}^{i}}^{x_{k+1}^{i}} \widehat{\varphi}_{i}(x) d x=\sum_{k=0}^{n_{i}-1} M_{k}^{i}\left(x_{k+1}^{i}-x_{k}^{i}\right)=S_{i},
\end{aligned}
$$

and conclude that

$$
\lim _{i \rightarrow \infty}\left(S_{i}-s_{i}\right)=\int_{0}^{1}(M(x)-m(x)) d x
$$

d) Observe that

$$
\int_{0}^{1}(M(x)-m(x)) d x=0
$$

iff f is Riemann integrable.

