Real Analysis, Math 821. Instructor: Dmitry Ryabogin Assignment VIII.

1. Problem 1.

a) Let μ be a measure on $X, f : X \to [0, \infty]$ be measurable, $\int_X f(x)d\mu = c$, where $0 < c < \infty$, and $\alpha > 0$ be a constant. Find

$$\lim_{n \to \infty} \int_X \log\left(1 + \left(\frac{f(x)}{n}\right)^{\alpha}\right)^n d\mu.$$

Hint: If $\alpha \ge 1$, the integrands are dominated by $\alpha f(x)$. If $0 < \alpha < 1$, Fatou's lemma can be applied.

b) Put $f_n(x) := 1_A(x)$ if n is odd, and $f_n(x) := 1 - 1_A(x)$ if n is even. Show that strict inequality can occur in Fatou's lemma.

c) It is easy to guess the limits of

$$\int_{0}^{n} \left(1 - \frac{x}{n}\right)^{n} e^{x/2} dx, \qquad \int_{0}^{n} \left(1 + \frac{x}{n}\right)^{n} e^{-2x} dx$$

as $n \to \infty$. Prove that your guesses are correct.

d) Does

$$\lim_{n \to \infty} \frac{1}{n} \int_{0}^{1} \log\left(1 + e^{nf(x)}\right) dx$$

exist for every real $f \in L([0,1], dx)$? If it exists, what is it?

2. **Problem 2.**

a) Let $\mu(X) < \infty$, $(f_n)_{n=1}^{\infty}$ be a sequence of bounded measurable functions on X. Assume also that $f_n \to f$ uniformly as $n \to \infty$. Prove that

$$\lim_{n \to \infty} \int_X f_n(x) d\mu = \int_X f(x) d\mu,$$

and show that the hypothesis " $\mu(X) < \infty$ " can not be omitted.

Hint: Take $X = \mathbf{R}, \mu$ - Lebesgue measure, $f_n(x) = \mathbb{1}_{[-n^2, n^2]}(x)/n$.

Definition. Let μ be a measure on X. We say that a sequence of integrable functions $(f_n)_{n=1}^{\infty}$ converges to integrable f in $L^1(X, \mu)$ -sense, if for any $\epsilon > 0$ there exist a natural $N = N(\epsilon)$, such that $\forall n > N$ we have

$$\int\limits_X |f_n(x) - f(x)| d\mu < \epsilon.$$

b) Construct a sequence of integrable on [0, 1] functions $(f_n)_{n=1}^{\infty}$ satisfying

$$\lim_{n \to \infty} f_n(x) = 0 \quad \forall x \in [0, 1], \qquad \int_{[0, 1]} |f_n(x)| dx \le C \quad \forall n,$$

but such that the sequence does not converge in $L^1([0, 1], dx)$.

Hint: Consider $f_n(x) := n \mathbb{1}_{(0,1/n](x)}$.

c) Construct a sequence $(f_k)_{k=1}^{\infty}$ of continuous on [0, 1] functions, such that

$$0 \le f_k(x) \le 1, \qquad \lim_{k \to \infty} \int_{[0,1]} f_k(x) dx = 0,$$

but such that the sequence converges for no $x \in [0, 1]$.

Hint: Consider $f_k(x)$ defined in Assignment VI, Problem 4, b).

d) Let $(f_n)_{n=1}^{\infty}$ be a sequence of nonnegative integrable functions on X converging to f almost everywhere as $n \to \infty$. Prove that

$$\int_{X} f_n(x) d\mu \to \int_{X} f(x) d\mu \quad \text{as} \quad n \to \infty$$

implies $f_n \to f$ in $L^1(X, \mu)$ as $n \to \infty$.

Hint: Let $\int_X f(x)d\mu := A$. For any $\epsilon > 0$ ther exists a subset $E_1 \subset X$ of finite measure such that

$$\int_{E_1} f(x)d\mu > A - \epsilon.$$

There exists $\delta = \delta(\epsilon) > 0$, such that

$$\int_{E} f(x)d\mu < \epsilon \qquad \forall E: \ \mu(E) < \delta.$$

Moreover, there exists $E_2 \subset E_1$ such that $\mu(E_1 \setminus E_2) < \delta$, and f_n converges uniformly on E_2 . We have

$$\int_{X} |f_n(x) - f(x)| d\mu = \int_{E_2} |f_n(x) - f(x)| d\mu + \int_{X \setminus E_2} |f_n(x) - f(x)| d\mu = \dots$$

- 3. **Problem 3.** Let E_i , i = 1, ..., n be measurable subsets of [0, 1] such that every point $x \in [0, 1]$ belongs to at least q sets E_i , $q \leq n$. Prove that there exists i such that $m(E_i) \geq q/n$.
- 4. **Problem 4.** Let f(x) be bounded on [0, 1]. Prove that $\int_{0}^{c} f(x)dx = 0 \ \forall c \in [0, 1]$ implies f(x) = 0 almost everywhere.

Hint:

a) Observe that for any open interval $(a, b) \subset [0, 1]$ we have

$$\int_{0}^{b} f(x)dx - \int_{0}^{a} f(x)dx = 0,$$

and the same is true for any open set.

b) Prove that the same is true for any closed subset of [0, 1].

c) Prove that the same is true for any subset $X := \bigcup_{i=1}^{\infty} F_i \subset [0,1]$ of type F_{σ} (a set X is called of type F_{σ} if it is a union of countably many closed sets). To do this, assume at first that $F_i \subset F_{i+1}$ (otherwise put $F_2 = F_1 \cup F_2$, $F_3 = F_1 \cup F_2 \cup F_3$,..., $F_i = \bigcup_{k=1}^i F_k$). Then observe that

$$X = F_1 \cup (F_2 \setminus F_1) \cup (F_3 \setminus F_2) \cup \ldots \cup (F_{i+1} \setminus F_i) \cup \ldots$$