Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment VIII.

1. Problem 1.

a) Let μ be a measure on $X, f: X \rightarrow[0, \infty]$ be measurable, $\int_{X} f(x) d \mu=c$, where $0<c<\infty$, and $\alpha>0$ be a constant. Find

$$
\lim _{n \rightarrow \infty} \int_{X} \log \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right)^{n} d \mu
$$

Hint: If $\alpha \geq 1$, the integrands are dominated by $\alpha f(x)$. If $0<\alpha<1$, Fatou's lemma can be applied.
b) Put $f_{n}(x):=1_{A}(x)$ if n is odd, and $f_{n}(x):=1-1_{A}(x)$ if n is even. Show that strict inequality can occur in Fatou's lemma.
c) It is easy to guess the limits of

$$
\int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x, \quad \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x
$$

as $n \rightarrow \infty$. Prove that your guesses are correct.
d) Does

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{1} \log \left(1+e^{n f(x)}\right) d x
$$

exist for every real $f \in L([0,1], d x)$? If it exists, what is it?

2. Problem 2.

a) Let $\mu(X)<\infty,\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of bounded measurable functions on X. Assume also that $f_{n} \rightarrow f$ uniformly as $n \rightarrow \infty$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu=\int_{X} f(x) d \mu
$$

and show that the hypothesis " $\mu(X)<\infty$ " can not be omitted.
Hint: Take $X=\mathbf{R}, \mu$ - Lebesgue measure, $f_{n}(x)=1_{\left[-n^{2}, n^{2}\right]}(x) / n$.

Definition. Let μ be a measure on X. We say that a sequence of integrable functions $\left(f_{n}\right)_{n=1}^{\infty}$ converges to integrable f in $L^{1}(X, \mu)$-sense, if for any $\epsilon>0$ there exist a natural $N=N(\epsilon)$, such that $\forall n>N$ we have

$$
\int_{X}\left|f_{n}(x)-f(x)\right| d \mu<\epsilon .
$$

b) Construct a sequence of integrable on $[0,1]$ functions $\left(f_{n}\right)_{n=1}^{\infty}$ satisfying

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \forall x \in[0,1], \quad \int_{[0,1]}\left|f_{n}(x)\right| d x \leq C \quad \forall n,
$$

but such that the sequence does not converge in $L^{1}([0,1], d x)$.
Hint: Consider $f_{n}(x):=n 1_{(0,1 / n](x)}$.
c) Construct a sequence $\left(f_{k}\right)_{k=1}^{\infty}$ of continuous on [0, 1] functions, such that

$$
0 \leq f_{k}(x) \leq 1, \quad \lim _{k \rightarrow \infty} \int_{[0,1]} f_{k}(x) d x=0
$$

but such that the sequence converges for no $x \in[0,1]$.
Hint: Consider $f_{k}(x)$ defined in Assignment VI, Problem 4, b).
d) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of nonnegative integrable functions on X converging to f almost everywhere as $n \rightarrow \infty$. Prove that

$$
\int_{X} f_{n}(x) d \mu \rightarrow \int_{X} f(x) d \mu \quad \text { as } \quad n \rightarrow \infty
$$

implies $f_{n} \rightarrow f$ in $L^{1}(X, \mu)$ as $n \rightarrow \infty$.
Hint: Let $\int_{X} f(x) d \mu:=A$. For any $\epsilon>0$ ther exists a subset $E_{1} \subset X$ of finite measure such that

$$
\int_{E_{1}} f(x) d \mu>A-\epsilon .
$$

There exists $\delta=\delta(\epsilon)>0$, such that

$$
\int_{E} f(x) d \mu<\epsilon \quad \forall E: \mu(E)<\delta .
$$

Moreover, there exists $E_{2} \subset E_{1}$ such that $\mu\left(E_{1} \backslash E_{2}\right)<\delta$, and f_{n} converges uniformly on E_{2}. We have

$$
\int_{X}\left|f_{n}(x)-f(x)\right| d \mu=\int_{E_{2}}\left|f_{n}(x)-f(x)\right| d \mu+\int_{x \backslash E_{2}}\left|f_{n}(x)-f(x)\right| d \mu=\ldots
$$

3. Problem 3. Let $E_{i}, i=1, \ldots, n$ be measurable subsets of $[0,1]$ such that every point $x \in[0,1]$ belongs to at least q sets $E_{i}, q \leq n$. Prove that there exists i such that $m\left(E_{i}\right) \geq q / n$.
4. Problem 4. Let $f(x)$ be bounded on [0, 1]. Prove that $\int_{0}^{c} f(x) d x=0 \forall c \in[0,1]$ implies $f(x)=0$ almost everywhere.

Hint:

a) Observe that for any open interval $(a, b) \subset[0,1]$ we have

$$
\int_{0}^{b} f(x) d x-\int_{0}^{a} f(x) d x=0
$$

and the same is true for any open set.
b) Prove that the same is true for any closed subset of $[0,1]$.
c) Prove that the same is true for any subset $X:=\cup_{i=1}^{\infty} F_{i} \subset[0,1]$ of type F_{σ} (a set X is called of type F_{σ} if it is a union of countably many closed sets). To do this, assume at first that $F_{i} \subset F_{i+1}$ (otherwise put $F_{2}=F_{1} \cup F_{2}, F_{3}=F_{1} \cup F_{2} \cup F_{3}, \ldots, F_{i}=\cup_{k+1}^{i} F_{k}$). Then observe that

$$
X=F_{1} \cup\left(F_{2} \backslash F_{1}\right) \cup\left(F_{3} \backslash F_{2}\right) \cup \ldots \cup\left(F_{i+1} \backslash F_{i}\right) \cup \ldots
$$

