Real Analysis, Math 821.

Instructor: Dmitry Ryabogin

Assignment IX.

1. Problem 1.

a) Let $f(x)$ be a monotonic function satisfying

$$
\forall x, y \in \mathbf{R}, \quad f(x)+f(y)=f(x+y), \quad f(1)=1
$$

Prove that $f(x)=x$.
Hint: Prove that $f(p / q)=p / q$, then consider two monotonic sequences $\left(r_{k}\right)_{k=1}^{\infty}$, $\left(m_{k}\right)_{k=1}^{\infty}, r_{k}, m_{k} \in \mathbf{Q}$, converging to $x \in \mathbf{R}, x>0$. For $x<0$, observe that $f(x)=$ $-f(-x)$.
b) Change the word monotonic by measurable in a), and answer the same question.

Hint: Observe that

$$
\int_{0}^{1} f(x+y) d y=\int_{0}^{1}(f(x)+f(y)) d y=f(x)+\int_{0}^{1} f(y) d y
$$

and conclude that f is continuous.
c)* Is it possible to drop the measurability assumption in b)?
2. Problem 2. a) Let $f(x), g(x)$ be increasing functions on the real line. Does it follow that $f(x) g(x)$ is increasing?
b) Construct the monotonic function on the real line which is not continuous only in rational points.
Hint: Consider

$$
f(x):=\sum_{k \in \mathrm{~N}: r_{k}<x} \frac{1}{2^{k}}, \quad r_{k} \in \mathbf{Q} .
$$

To show that $f(x)$ is not continuous in rational points observe that $\forall x>r \in \mathbf{Q}$ we have

$$
f(x)=\sum_{r_{k}<x} \frac{1}{2^{k}}=\sum_{r_{k}<r} \frac{1}{2^{k}}+\sum_{r \leq r_{k}<x} \frac{1}{2^{k}}, \quad \sum_{r \leq r_{k}<x} \frac{1}{2^{k}}>\frac{1}{2^{n}},
$$

provided r has n-th place in enumeration of rationals.
To show that f is continuous in $\mathbf{R} \backslash \mathbf{Q}$, observe that

$$
\sup _{\mathbf{R}} f(x)=1, \quad \inf _{\mathbf{R}} f(x)=0
$$

hence the sum of jumps may not be bigger than 1 .
3. Problem 3. a) Let $E \subset[0,1]$, and let $f(x)$ be a bounded function on E, satisfying $f\left(x_{1}\right) \leq f\left(x_{2}\right) \forall x_{1}, x_{2} \in E, x_{1}<x_{2}$. Is it possible to extend this function in such a way that the extension $\phi(x)$ would be nondecreasing on the whole segment $[0,1]$?
Hint: Let $x_{0}=\inf E$. Put $\phi(x):=\sup _{y<x} f(y)$ for $x \in[0,1] \backslash E, x>x_{0}$, and $\phi(x):=$ $\inf _{E} f(y)$ for $x \in[0,1] \backslash E, x \leq x_{0}$.
b) Change the word bounded by unbounded in a), and answer the same question.

Hint: Look at "ends".
4. Problem 4. a) Let $E \subset[0,1]$ be nowhere dense closed set of a positive measure. Construct an increasing continuously differentiable $f(x)$ on $[0,1]$ such that $f^{\prime}(x)=0$ $\forall x \in E$.
Hint: Take

$$
f(x):=\int_{0}^{x} \phi(t) d t, \quad \phi(t):=\inf _{y \in E}|y-t| .
$$

Then observe that ϕ is continuous, and $f^{\prime}(x)=0 \forall x \in E$. To show that f is increasing take $0 \leq x_{1}<x_{2} \leq 1$, and observe that there exists an interval $(\alpha, \beta) \subset\left(x_{1}, x_{2}\right)$, such that $(\alpha, \beta) \cap E=\varnothing$.
b) Is it possible to drop the assumption nowhere dense in a)?

Hint: There exists $(\alpha, \beta) \subset E$ such that $f^{\prime}(x)=0 \forall x \in(\alpha, \beta)$.
5. Problem 5. Prove that $\forall E \subset[0,1],|E|=0$, there exists a continuous increasing function $f(x)$ on $[0,1]$ such that $\forall x \in E$ we have $f^{\prime}(x)=+\infty$.

Hint:

a) $\forall n \in \mathbf{N}$ there exists an open bounded set G_{n} such that $E \subset G_{n}$, and $m\left(G_{n}\right)<2^{-n}$.
b) Put $f_{n}(x):=m\left(G_{n} \cap[0, x]\right)$. Then f_{n} is increasing, continuous, nonnegative, and satisfying $f_{n}(x)<2^{-n}$.
c) A function $f(x):=\sum_{n=1}^{\infty} f_{n}(x)$ is also increasing, continuous, nonnegative.
d) Let $x_{0} \in E$. Then $\left[x_{0}, x_{0}+h\right] \subset G_{n}$ for some n fixed, provided $|h|$ is small. Prove that $f_{n}\left(x_{0}+h\right)=f_{n}\left(x_{0}\right)+h$.
e) Use d) to conclude that $\forall k \in \mathbf{N}$ and $|h|$ small we have

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq \sum_{n=1}^{k} \frac{f_{n}\left(x_{0}+h\right)-f_{n}\left(x_{0}\right)}{h}=k .
$$

