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Abstract

Wayvelet type representations of fractional integrals and derivatives are stud-
ied in the framework of LP-spaces. These representations generalize the notion of
Marchaud’s fractional derivative and are intimately connected with the Calderon
reproducing formula. By choosing a relevant “wavelet” measure we give a uni-
fied representation of the following basic objects in fractional calculus on the real
line: the Riemann-Liouville fractional integrals, the Riesz potentials, the conjugate
Riesz potentials, the inverses and linear combinations of these operators.
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Introduction

In the present article we announce some results related to representations of
various fractional integrals and derivatives in the form

A% f = f* tht = lim I dt, acC, (0.1)
cfa) ) T T o (a) ) e
0 p—0o0 €

where 1, is a suitable dilated measure (or distribution), ¢, («) is a normalizing
factor and the limit is understood in the LP-norm or in the “almost everywhere”-
sense. In the case a« = 0, A® coincides with the identity operator or with the
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Hilbert transform (depending on v) and is connected with Calderén’s reproducing
formula
o0
1 * Up kV
f= / foxug * v dt,
Cu v t
0

(seee.g. [1],[4],[6], 7] and references therein). Various fractional integrals
(and derivatives) can be written in the form (0.1). For example, by choosing
v = 61, (the Dirac unit mass at the point z = 1) and ¢, () = I'(«) we obtain the
well known Liouville fractional integral

wo 1 [f@—0) 1 [ flydy
Af‘rwm!‘ = | et

— 00

E .
By putting v = 3 (f) (—1)76;, Rea > —£, with the unit Dirac masses at the
J=0
points 5 = 0,1,---,4, one can readily see that A*f is the Marchaud fractional
derivative of f of order —« (up to a constant factor, cf. [ 5], [ 9]). By choosing

different v, this list of examples can be continued.

Our goal is to show that all basic operators in fractional calculus can be rep-
resented in the form (0.1). We also answer the following question: what classes
of measures (or distributions) generate concrete types of fractional integrals and
derivatives. Clearly, for Rea < 0 the measure v must enjoy some cancellation
properties or, in other words, v should be a “wavelet measure”. Owing to this
phenomenon, the representations (0.1) may be called wavelet type representations
of fractional integrals (or derivatives).

The proofs of the statements presented below can be found in [ 8 |.

Notation and Definitions

Below Z, N, R and C denote the set of all integers, positive integers, real num-
bers and complex numbers respectively; [a] is the integer part of a € R. The
notation C = C(R), L? = LP(R) for function spaces is standard; (f(z))+ =
max{tf(z), 0}, ® = ®(R) is the Lizorkin space of test functions, ®’ = ®'(R) is
the dual of ® (see [3],[9]). For w € ® and f € &' we denote

mw:/fwﬂam

where the integral can be interpreted as the value of the distribution f at the
test function w(z). We write “f(z) = g(z) in the ®'-sense” if (f,w) = (g,w) for
all w € . For g € ® and ¢ € R the distribution g; is defined by (g w) =
(9(z), w(tr)), w € ®. In the following M denotes the set of all complex-valued



finite Borel measures p on the real line R. For p € M the values u({xoc}) are

assumed to be zero. -

(He)(x) = p.v.% ;"El/;

dy

is the Hilbert transform of ¢. For p € LP, 1 <p<ooand p € M
(orm)e) = [ oo =tdu(w), t>0.

In the following f denotes the Fourier transform of the distribution f; fV is the
inverse Fourier transform.

Definition 0.1. For w € ®, a € C, the fractional integrals I$w, the fractional
derivatives DSw, the Riesz potential I*w, the conjugate Riesz potential I¢w, the
Riesz fractional derivative D*w and the conjugate Riesz fractional derivative DSw
are defined by:

(IEw)(z) = [(Fig) @ (&)]¥ (=), (Diw)(z) = [(Fi€)*@(§)]" (x), Rea >0,

(I*w)(z) = (|§]7"@(£))"(2), (Ifw)(@) = (|| *sgnfw(€))"(z), Rea >0,
(Dw)(z) = (I€]*@(€)) (=), (Dfw)(z) = (|¢|*sgnf@(¢))"(z), Rea > 0.

where (Fir)~® =e® log |z|F(ami/2)sgnx_

For the classical representations of these operators see [ 9 |.

Definition 0.2. For f € ® and o € C, the ¥ -distributions I$f, DLf,
I1¢f, Dof, ITf, DS f are defined by duality as follows:

(I:?:faw): (falg—u_})a (D(:xl:.fa L(J):(_f,D%(D), (Iafaw):(fam)a

(Df,w) = (£,D%®), (I7fw)=(fI¢w), (Difw)=(fD3®).

1. Basic relations involving ®’-distributions

Given a ®’-distribution v and a complex number «, consider the formal integral

Aa»“:/tly_tadt. (1.1)
0

Our goal here is to give sense to this integral and to represent (1.1) as a linear
combination of kernels arising in fractional calculus.



For a € C, consider distributions A%, h, hS, which have the following Fourier
transforms in the ®’-sense (see [ 9, p. 147 ], [ 2, p. 170 ]):

h2(§) = (Fi&) ™ = ¢l exp (£ Tsgn &), hX(€) = 67, AL (§) = sgnlel ™™

Clearly, I$f = hS = f, I®f = h®« f, I¢f = h$ = f for all « € C and f € ®'.

Denote
p

v Vi

€

Lemma 1.1. Let a € C, v be a ®'-distribution such that D(§) € Lioc(R \ {0}).

Denote 04 (&) = M

5 and let the integrals

ai:/ j;EZ)dn
) n

erist as the improper ones. Then AZ) — ayh®+a_hy as € —0,p—o00 in

the ®'-sense. If « ¢ 7 , then this limit is also equal to cyh$ +c_h® , where

cy =1 a+/cos(%) + a_/sin(?)] .

AN

Lemma 1.1 shows that the integral [~ (v * f)(z)dt/t*=% may be used for
representation of the following operators:

(a) Riesz potentials and their inverses (ay = 1,a_ = 0);

(b) conjugate Riesz potentials and their inverses (a4 = 0,a_ = 1);
(c) left-sided fractional integrals and derivatives (cy = 1,¢_ = 0);
(d) right-sided fractional integrals and derivatives (cy = 0,c_ = 1);

(e

In a similar way one can represent compositions of mentioned operators with
a Hilbert transform and linear combinations (with constant coefficients) of such
operators.

~—

integrals and derivatives of integer order.

2. Wavelet Type Representation of Fractional Derivatives (LP-theory)

In this section we exhibit natural LP-analogues of Lemma 1.1 and describe
some classes of measures and distributions v for which these analogues hold.

Theorem 2.1. Let Rea > 0, v € M. Assume that

/ #idv(z) =0 forall j=0,1,---,[Rea] and / z|Pd|v|(z) < oo

|z|>1



for some B > Rea. Let f € L", 1 < r < oo, and one of the derivatives

& f, D*f, Df (in the ®'-sense) belongs to LP, 1 < p < oo. Then the limit
Acf = lim [Z5 (v f)(2)dt /11 exists in the LP-norm and in the a.e. sense, and
the following relations hold:

A%f =y Def+v_HDSf =c.DSf+c_D2f =ayDf +a_Dg f
(in the second equality it is assumed o ¢ N) where

- I‘(—a)[/xadu(a:) + cos om/ |a:|ad1/(3:)], a ¢ N,
1= [ K @yds = " =
- (=1)° / z%log —dy( )y, a=LeN
14 J || ’ ’
VYo =—-ATi= —F(le_ ) / |z|*dv(z)
cy =T (—-a) /a:adu(a:), c_ =T (—a) / |z|“dv(z).

For a ¢ N,

a+:I‘(—a)cosa—27T / lz|“dv(x), a_ =—il'(— sm—/|x|°‘sgna: dv(z).

Fora=/ €N,

/

P T g 2
log — =2k k=1,2,---
g! z Og |$|d]/($)7 7 )=

Y

a4 = 4 -
_1)e-1)/2
% /.Z'edV(.%'), £=2k+1,k=0,1,2,---;
\ ) —00
)
i(—1 £/2+1
Z()l% /a:edy(a:), L=2k,k=1,2,---,
a_ = -

1 (e—1)/2 1
% /xelog‘x|du(a:), L=2k+1,k=0,1,2,---.

— 0o
In the case of purely imaginary order operators D, D%, DS are well determined
in Definition 0.1 on functions belonging to ®. On LP-functions, 1 < p < o0

they are understood as the linear bounded (from L? into LP) multiplier operators
extended from the dense subset ®.

\



Theorem 2.2. Let Rea=0, v e M,
v®) =0, [ [afdvi@) <o, [ ol dpi(@) < o0
lz|>1 |z|<1
for some 3>0,6 € (0,1). If f€ LP, 1 < p < oo, then the limit
p
A*f = lim /(yt x f)dt/t' T
p—00 ¢
exists in the LP-norm and in the a.e. sense, and the following relations hold:
Af =y DYf+v_HDSf =c. DY f+c_D2f =a,D*f+a_Dgf

(in the second equality it is assumed that o # 0). Here v+ are defined by

/ z%dv(x) + cos(am / \x|adu($)} a#0,
Y+ = 9 ’ e

7-= —m_/ |z|%dv(z)

c+ are the same as in Theorem 2.1 and ay can be evaluated by the following
formulae:

I'(=a) cos(ar/2) / [ du(z), @ £0
a4y = < 00 -
\_4 log ﬁdy(x), a=0.

—il'(—a) sin(am/2) / lz|*sgnx dv(z), a#0

i o0
% / sgnx dv(x), a=0.

\



Consider some generalizations. Assume that Re @ > 1 and v belongs to a
certain class of ®'-distributions which satisfies the following condition.

@I
Condition 2.3. Ifa =/f+ay, £ €N, 0< Re ap < 1, then vy (E) If_y is a
finite Borel measure (i.e. vy € M) such that
v(R)=0 and / 1z[Pdy|(z) < 0o for some > Re wy.

|z|>0

If Re ag = 0, we assume additionally, that

|z| % d|w|(z) < 0o for some & € (0,1).
|z|<1

Example 2.4. Let Re ag # 0,

¢
v(z)=6(x—1) Z

j=0

5(])
]!

6(x) being the Dirac é-function. It is easy to see that v satisfies Condition 2.3.
Furthermore, for such v and f € &,

L

Oth*f _ o () dt
/0 t1+adt—/0 [ flz—1) Z j! fJ }t1+a'

Jj=

This coincides with the Gelfand-Shilov regularization of the divergent integral
Jotme f(z — t)dt (cf. [ 2, p. 48 ]).

Theorem 2.5. Let « =L+ «ap, £ €N, Reag € [0,1). Assume that v satisfies
Condition 2.3. Given f € ®', let one of the derivatives DL f, D*f, D f (in the
®'-sense) belong to LP, 1 < p < co. If Re a ¢ N, then the truncated integral
J2- (v = f)(@)dt /'Y coincides (in the ®'-sense) with the LP-function that tends

Y4+ DLf+v-HDSf =c; DY f +c_D2f =a,Df +a_Dgf

in the LP-norm and in the a.e. sense. Here vy, c4, a+ have the same form
as in Theorems 2.1 and 2.3 in which o and v should be replaced by oy and vy =
1 il/ respectively. If Re a € N, then the above statement is valid for the integral
JL(ve * f)()dt [t withe — 0, p — oo.

3. Wavelet type representation of fractional integrals

In this section we are concerned with integrals which have the form
I*(v,0) = [;°(¢ * v)(x) dt/t'=*, Re a > 0. They represent fractional inte-
grals (and their linear combinations) and can be regarded as solutions to the
corresponding differential or, more generally, pseudo-differential equations.



Given a ®’-distribution f that agrees with a certain locally integrable function,
we denote the latter by [f]s.
Theorem 3.1 Let Re a > 0, a = £+ ap, ¢ is a nonnegative integer , 0 <
Re ag < 1. Assume that v is an integrable function with the following property: the
generalized derivative (in the ®-sense) vy = (d/dx)*v belongs to M and satisfies
Theorem 2.2. If o € LP, 1 < p < oo and one of the ®'-distributions I$p, I%p,
I ¢ agrees with a certain L -function, 1 < r < oo, then

p

. ©* Vg - -
Jim [ g dt =7 (19 ¢le + 7 HUIS¢le =
p —oo

= [I%le +E_[I%ls (¢ N)
= a, [I%)e + a_[I%)e

(the limit being understood in the L™-norm and in the a.e. sense) where

[e%s) 0

') [/ =¥ duy(z) + cos(agm) /
Y+ = 0o 01 -

/ log —dvp(x), ap =0,

o |l

x_aodyo(x)} , ag#0,

. 0
~ _ T — .
i = gy [l (@)

0o 0
= I‘(ao)/ ™ ¥ dyy(z), .= (—l)eF(aO)/ |z| =¥ dyy();
0 —o00
a+ = (64 + ¢_) cos(am/2), a_ =1i(¢cy —c¢_)sin(ar/2), a €N,
> 1
(—l)k/ log mduo, a =2k,
EL}. = - 0
(—1)k_17r/ dvy, a=2k—-1, keN,
0
( 1)’“+17ri/ dvo, a =2k,
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