WEAK-TYPE (p,p) ESTIMATES FOR CERTAIN MAXIMAL
OPERATORS

GEORGIY ARUTYUNYANTS AND DMITRY RYABOGIN

ABSTRACT. Let ® € L1(R") have a compact support, and let f € LP(R"), p > 1,
% + % = 1. We show that the maximal operator Me : f — sup;so®: * f has

weak-type (p,p) and lim; .o ®; x f(x) exists for a.e. x € R™. The result is sharp
in the sense that for any 1 < s < ¢ there exists ® € L*(R"), having a compact
support, such that Mg is not of weak-type (p,p).

1. INTRODUCTION

Let @, f be nonnegative functions and let

1 T
)= 50 (7), e f@ = [ s
Rn
Consider the maximal operator
(1) My : f—>M¢f(x)Estu%) O, + f(x).
>

This operator controls the pointwise convergence of ®, * f(z) as t — 0, and comes
up in many problems in harmonic analysis and partial differential equations. See [7]
and references contained therein.

A basic unsolved problem is to determine the range of boundedness of the maximal
operator Mg on the scale of L? spaces. Our main result is the following.
Theorem. Let ® € LY(R"), f € LP(R"), 1 < p < o0, % + é = 1. Suppose also that

supp (®) C Bg(0). Then
(2) Nz e R": Mg f(z) > A} < e B™ |97 [I£115-

Moreover, for any 1 < s < gq, there exists ® € L*(R"), having a compact support,
such that Mg is not of weak-type (p,p).

Operators of this type have been studied before by several authors. For example,
when & decreases at a sufficiently high rate at infinity, then Mg is majorized by
the Hardy-Littlewood maximal operator. If for each z, ®(rz) is decreasing in r,
0 < r < 0o, then by the method of rotations, Mg is bounded from LP(R") to itself,
1 < p < 0. If one strengthens the integrability assumption on ® by adding a Dini-
type condition, then Mg is of weak-type (1,1). See [7], page 72. This conclusion
also holds in the case ®(z) = Q(z/|z])xp,0)(2), QlogtQ € L'(S"') (see [4], [5],
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[6]). Here xp,(0) is the characteristic function of the ball with center at the origin of
radius 1.

The proof of our main result is based on a multidimensional stopping time argument
inspired by a result due to S. Hudson ([1], [2]). This approach is of purely geometric
nature and is interesting in its own right. For example, this point of view yields
yet another proof of weak-type (1,1) boundedness of the Hardy-Littlewood maximal
operator.

The sharpness of the Theorem follows from the following example (cf. [7], page
81). Let1§p<ooand1§s<q,%+$=1. Define

O(z) = (1= |0[) X (@), (@) =27 X000 (@)
Then for 1 —1/s < e < 6 < 1/p, we have ® € L*, f € LP and
M<I>f($) 2 ®$1 * f(ZE) = 09,

provided z € R" : 2y > 1, (29, T3, ..., Tp) € (—1, 21 + 1)L

Standard arguments (see e.g. [8], Ch. I) imply:

Corollary. Let ® € LY(R") have a compact support, and let f € LP(R"), 1 < p < oo,
% + % =1. Then %E% @, x f(z) exists for almost every z € R™.

This paper is organized as follows. In the first section, entitled ”Selection Prop-
erty”, we describe a higher dimensional version of the property inspired by ideas of
Hudson ([1], [2]). See also ([3]) for a thorough description of related ideas and their
applications. In the following section, entitled ”Proof of Lemma 2”7, we estimate a
key expression resulting from the linearized version of the maximal operator.

Remark: It is possible that Theorem can be proved by an appropriate extension
of known results in multi-linear interpolation. More precisely, by viewing Mg as
a sub-bi-linear operator, one can show that this operator maps L' x L® — LbL®
and L*® x L' — L*. If one could prove an appropriate bi-linear version of the
Marcienkiewicz interpolation theorem, Theorem would follow. However, our goal is
to give a direct geometric argument that exposes the nature of the operator.

2. SELECTION PROPERTY.

Definition. We say that ® has the selection (p, ¢) property, 1/p+1/q = 1, if for any
positive measurable function ¢(z) defined on a set D C R", (0 < |D| < o0) there is
a measurable subset £ C D such that

(3) |E| > a| D],
(4) IS(E, @, t)]lg < Al|®]l, D9,
where

5) sEenw = [ o2

t(z) ) t*(z)

Constants here do not depend on (), D, E.
Lemma 1. If ® has the selection (p,q) property, 1 < p < oo, then Mg satisfies (2).
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Proof. Let D = {x € R" : Msf(x) > A\}. Without loss of generality we may

assume that D is bounded. Then
1 1 c dx T—y
D < —-|EF| < — | M, < — 0]
pl< 2l < 2 [t < S [ [rwe (50) a
E E Rn

¢ r—y\ dz c cA /
= 1w [ @ (520) 2 < SIS @0l < Sl D1
R” E

|

Lemma 1 reduces the proof of the Theorem to the following estimate.

Lemma 2. The function ® = xp,(0) has the selection (1,00) property. More pre-
cisely, for any positive measurable function t(x) defined on a set D C R"™ of finite

measure, there is a subset D C D satisfying the following properties
(6) |D| > ¢|D|,

(") SOxmw )= [
DN By, (y)
Here B,(y) ={z € R": |z —y| < r}.

Lemma 3. Let ® be as in the Theorem and let ¢ < co. Then ® has the selection
(p, q) property with a = ¢ from (6) and A = ¢ R™P.

Proof. We take E = D from the previous lemma and observe that (7), together
with the Jensen inequality and the Fubini Theorem, yield

IsE.0.0l < crree fay [ @(i(;)y) anf(x):

R” ENBgy(2)(y)

dx T—y
=CiRm [ 2 o1 dy =C'RY|E| [ ®(R¢)de.
E BRt(m)(l‘) R

By making a substitution RE = z in the last integral we obtain the desired result.

|

3. PrROOF OF LEMMA 2

We will define the set D as a union of sets {D;}22,. The procedure described
below is a modification of the Calderén-Zygmund stopping time argument. By I (q)
we denote the side-length of a dyadic cube g. We construct D; as follows

Di={z€D|z€qecQ,andt(z)>I(q)}U

U{z € D |z ¢ q€ Qi and t(z) > 27"},
where (0;_1 is a collection of dyadic cubes which we define by induction.
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Set @_; = () and assume that Q, ..., @;_; have already been constructed. Consider
the net of dyadic cubes ¢ with I(g) = 27¢. The construction of @Q; consists of two
steps.

Step 1: We choose from the net all those cubes which do not intersect cubes from
;1 and for which one of the following conditions holds:

(@) |g! / S(Ds, X200, )W)y > 1/2,

q

where
- dz
S Diu 7t = 9
Boxnod)= [
binBt(m)(y)

|D~i Ngl _ 1

b —.

RS

Step 2: We add all neighbors from the net to the cubes chosen before (Q; 1 U {
cubes chosen by step 1 }).

Set @; = @Q;—1 U { cubes chosen by step 1 } U{ cubes chosen by step 2 }. If a cube
q satisfies (a) and (b) we say that it is chosen by (a).

We claim that U®,D; = D is the desired set. First of all

(8) bcpc J ¢
q€Qi,i=0

The first inclusion is obvious. The second one follows from the following argument.
Fix any z € D. Assume that ¢(z) > 27 for some i and x does not belong to any
cube from ;_; (otherwise we are done). Then x € D;. Since almost all points of D,
are points of density, there is a dyadic cube ¢* > z, I(¢*) = 277, j > 7 and such that
|D; N ¢*|/|¢*| > 1/2. Since D; C D;, |D; N ¢*|/|q*| > 1/2. Thus by (b), ¢* C q € Q.

So (6) would easily follow from (8) and

o0

9) > gl < calDl.

To prove (9), let us divide the system {Q;}2, into three disjoint subsystems:
K; = { cubes chosen by condition (a)}, K2 = { cubes chosen by condition (b)},
K3 = { cubes chosen by step 2 }. Then it is obvious that

d gl <s5m > gl

gEK3 gEK1,q€EK?
Moreover

Z“”:i > \Q|S2§: Y [Ding| <

geEK> 1=0 ¢€(Qi\Qi-1)NK> 1=0 ¢€(Qi\Qi-1)NK>
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2 ). |Dng/<2Dl

1=0 ¢e(Q;\Qi—1)NK>
On the other hand

Y=Y ¥ <2y 3 / S(Ds, X000, 1) (W) dy <

g€k 1=0 ¢€(Q:\Q:i—1)NK1 =0 ¢e(Qi\Qi-1)NK1

SIDS / (D, X0, 1) () < 2 / S, xon )0}y =

1= Oqu\Qz nI(lq
2/t” / dydz < 2¢,|D|.

2 | o

™ DN Bt(cc) D Bt(m)(m)

The third line follows by Fub1n1 theorem, By, (z) = {y € R": [z —y| < t(z)}. So
we have

oo

Dooladl =D lal+ D g+ D gl <
q€Q;i=0 qE€K1 gEK> gEK3
<G+ lal+ D> lal) < e |D

geEK, qge Ko
and it proves (6).
It remains to show (7). At first we observe that S(D, , XB1(0)51)(y) > 1/2 implies
y € q € Q; for some i > 0. Indeed, fix any y such that S(D XBy(0);1)(y) > 1/2. Since
D; C Djyy we have S(D;, xp,(0),t)(y) > 1/2 for sufficiently large j. By the differen-
tiability of integrals, there is a dyadic cube ¢*, such that |¢*|~* [ S(D;, x,(0), t)(z)dz
.

>1/2 and I(g*) = 27™, m > j. Now D; C D, implies |¢*|~* [ S(Dim, X5,(0), t)(2)dz
q*

> 1/2 and (a) gives ¢* C g € Q;, l(q) =271 < m.
Now we decompose S(D, xg,(0),t)(y) into two parts. The first part will be esti-
mated pointwise, the second one — by mean. Namely

S(D, X1(0), 1) (y) = / e / dx

t"(x) ()
LN By(4)(y) HO By(z)(y)

= S(La X B1(0)» t)(y) + S(H, X B1(0)» t)(y)’
where, L = DN Biooiq)(y) and H = DN (R™\ Biooi(q)(y))- First, we show that

Observe that x € LN By (y) implies t(z) > I(g)/2. This is obvious if [z —y| > I(q)/2,
since t(z) > |z —yl|. If |z —y| < I(g)/2, then either x € ¢, or = belongs to the neighbor
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g of ¢ with 1(¢) > I(q)/2 (use Step 2). But
reLcD= U {reDngq: t(zx) >},
g€Qi\Qi—1,i=0
so t(x) > 1(q). This gives

lq),_,
SLoxmo ) < (L) Buniov)] = €.
and we get (10). To finish the proof of the lemma, we should show that

To prove (11), it is enough to get the following estimates
S(H\ Hi—1,xB,0),t)(y) < C, S(Hi—1, XBy(0), 1) (y) < C,

where Hi—l = Dz’—l ﬂN (].:{.1z \ Blo()l(q)(y)).. Observe thatj S({{ \ Hi_l,XBl(o),t)(y) = 0.
Indeed, for any z € D\ D;_1, t(z) < 27"t we have (D \ D;_1) N (R™ \ Biooi(g)(y)) N
By (y) = 0. Tt is left to show that

(12) S(Hi—1, XBy(0), 1) (y) < C.
We claim that
1
(13) S(Hi—la XB1(0), t) (y) <c |q*| /S(Hi—la X B1(0)> t) (5) dg,

q*
where ¢* has the same center as ¢, and I(¢*) = 31(¢q). Applying Fubini Theorem we
see that the left hand side of (13) equals

de 1" N By (z)| dx
/ tn(@ﬁc/ )

H;—1 NBy(z)(y) Hiy

But for every x € H;_1 N By(z)(y), we have
g N By ()]
|q%|
This gives the inequality claimed in (13).
It remains to show that the right-hand side of (13) is finite. Let N(g) denote the
set of dyadic neighbors of g of the sidelength I(g). Then observe that

¢* C M = N(father of ¢) U father of q.
Hence there is a cube ¢ € M such that

1 1
4 — [ S(H;_1, X5,0), d¢ <c— [ S(Hi_1, X, de.
(14) |q*|q*/( 1, XB1(0), 1) (€) €<C|q|!( 1, XB1(0), 1) (§) d€

We claim that the mean in the right-hand side of (14) is bounded by 1/2. Indeed,
observe that

> c.

gNp==0 Vp € Qi—o U {cubes chosen by step 1 during stagei — 1}.
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Otherwise, by step 2, ¢ would be covered by some cube chosen at stage | <17 — 1,
which contradicts the choice of q. This means that

%/S(Hi—laXBl(O)at)(f) d¢ < %/S(Di—l,XBl(O)at)(Q d¢ < %
q q
by (a) in the construction of ;. This completes the proof of Lemma 2 and the
Theorem.

|

Acknowledgment. We would like to thank Steve Hofmann, Loukas Grafakos, Nigel
Kalton, Mark Rudelson, Terence Tao and Artem Zvavitch for helpful discussions. Our
special thanks are to Alex losevich for his help and encouragement. The first author
was partially supported under the auspices of the NSF grant DMS00-87339. The
second author was supported under the auspices of a grant 02-253, CQ 759 from the
University of Missouri Research Board.

REFERENCES

[1] Steven Hudson, A covering lemma for mazimal operators with unbounded kernels , Michigan
Math. J., 34 (1987), 147-151.

[2] Georgiy Arutyunyants, Dmitry Ryabogin, On a paper of Hudson, www. math. missouri.
edu/ryabs/

[3] Pascal Auscher, Steve Hofmann, Camil Muscalu, Terence Tao, and Christoph Thiele Carleson
measures, trees, extrapolation, and T (b) theorems, www.math.ucla.edu/tao/

[4] Michael Christ, Weak type (1,1) bounds for rough operators, Annals of Math., 128 (1988), 19-42.

[5] Michael Christ, J.-L. Rubio de Francia, Weak type (1,1) bounds for rough operators II, Invent.
Math., 93 (1988), 225-237.

[6] Andreas Seeger, Singular integral operators with rough kernels, J. of AMS, 9 (1996), 95-105.

[7] Elias M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory inte-
grals, Princeton University Press, Princeton NJ, 1993.

[8] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Univer-
sity Press, Princeton NJ, 1970.

GEORGIY ARUTYUNYANTS, DEP. OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA,
MO 65211, USA

E-mail address: arutyung@math.missouri.edu

DMITRY RYABOGIN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA,
MO 65211, USA
E-mail address: ryabs@math.missouri.edu



