SINGULAR INTEGRALS GENERATED BY ZONAL MEASURES

DMITRY RYABOGIN AND BORIS RUBIN

(Communicated by Christopher D. Sogge)

ABSTRACT. We study L^p-mapping properties of the rough singular integral operator $T_\nu f(x) = \int_0^\infty dr/r \int_{\Sigma_{n-1}} f(x - r\theta)d\nu(\theta)$ depending on a finite Borel measure ν on the unit sphere Σ_{n-1} in \mathbb{R}^n. It is shown that the conditions $\sup_{|\theta| \leq \rho} \int_{\Sigma_{n-1}} \log (1/|\theta \cdot \xi|)d\nu(\theta) < \infty$, $\nu(\Sigma_{n-1}) = 0$ imply the L^p-boundedness of T_ν for all $1 < p < \infty$ provided that $n > 2$ and ν is zonal.

1. INTRODUCTION

Let Σ_{n-1} be the unit sphere in \mathbb{R}^n, $\Omega \in L^1(\Sigma_{n-1})$, $\int_{\Sigma_{n-1}} \Omega(\theta)d\theta = 0$. Consider the classical Calderón-Zygmund singular integral operator

$$(T_\Omega f)(x) = \lim_{\rho \to 0} \int_{\rho} (T_{\Omega;\rho} f)(x)$$

$$(1.1) \quad = \lim_{\rho \to 0} \int_{\rho < |y| < \rho} f(x - y)\frac{\Omega(y/|y|)}{|y|^n} dy,$$

arising in a variety of problems (we refer the reader to the books [3], [9]-[11] and the survey article [5] for more background information). It is well known (cf. [10], p. 40) that if

$$(1.2) \quad \sup_{|\xi| = 1} \int_{\Sigma_{n-1}} |\Omega(\theta)| \log \frac{1}{|\theta \cdot \xi|} d\theta < \infty,$$

then T_Ω is bounded from $L^2(\mathbb{R}^n)$ into itself. In [5] I. Grafakos and A. Stefanov asked the following

Question. Does (1.2) imply the L^p-boundedness of T_Ω for some $p \neq 2$?

In this note we show that (1.2) implies the L^p-boundedness of T_Ω for all $p \in (1, \infty)$ in the case $n > 2$, provided that Ω is zonal (i.e. invariant under all rotations about the x_n-axis). We also consider a generalization of T_Ω with Ω replaced by a

Received by the editors September 10, 2000.

1991 Mathematics Subject Classification. Primary 42B20; Secondary 47G10.

Key words and phrases. Singular integrals, L^p-boundedness.

This research was partially sponsored by the Edmund Landau Center for research in Mathematical Analysis, supported by the Minerva Foundation (Germany).
finite Borel measure ν on Σ_{n-1} (cf. [8])

$$\begin{align*}
(T_{\theta} f)(x) &= \lim_{\epsilon \to 0} (T_{\theta}^\epsilon f)(x) \\
&= \lim_{\epsilon \to 0} \int_{\epsilon}^{\theta} \frac{d\theta'}{\epsilon} \int_{\Sigma_{n-1}} f(x - r\theta') d\nu(\theta).
\end{align*}$$

(1.3)

Definition. Let $SO(n-1)$ denote the group of rotations leaving the x_n-axis fixed. A finite Borel measure ν on Σ_{n-1} is called *zonal* if $\int_{\Sigma_{n-1}} f(\gamma\theta) d\nu(\theta) = \int_{\Sigma_{n-1}} f(\theta) d\nu(\theta)$ for all $\gamma \in SO(n-1)$ and $f \in L^1(\Sigma_{n-1}; d|\nu|)$.

Our main result is

Theorem. Suppose that ν is zonal, $\nu(\Sigma_{n-1}) = 0$, $n > 2$.

(a) If

$$\int_{\Sigma_{n-1}} \frac{1}{\sqrt{1 - \theta_n^2}} d\nu(\theta) < \infty,$$

then the operator T_{θ}, initially defined by (1.3) on functions $f \in C^\infty_c(\mathbb{R}^n)$, extends to a bounded operator from L^p into itself for all $p \in (1, \infty)$.

(b) Let $f \in L^p(\mathbb{R}^n), 1 < p < \infty$. If

$$\int_{\Sigma_{n-1}} |\theta_n|^{-\beta} (1 - \theta_n^2)^{-\beta/2} d\nu(\theta) < \infty$$

for some $\beta \in (0, 1/2)$, then $\|\sup_{0 < \epsilon < \infty} |T_{\theta}^\epsilon f|\|_p \leq c_p \|f\|_p$, $1 < p < \infty$, and the limit in (1.3) exists in the L^p-norm and in the a.e. sense.

The proof of this theorem employs results of D. K. Watson [12], and of J. Duandikotezia and J. L. Rubio de Francia [2].

Corollary. Suppose that ν is zonal, $\nu(\Sigma_{n-1}) = 0$, $n > 2$. Then T_{θ} extends to a bounded operator from L^p into itself for all $p \in (1, \infty)$, provided

$$\begin{align*}
\sup_{|k| \leq 1} \int_{\Sigma_{n-1}} \frac{1}{|\theta \cdot \xi|} d\nu(\theta) < \infty.
\end{align*}$$

(1.5)

2. **Proof of the Theorem and the Corollary**

2.1. **Auxiliary results.** The proofs of the following two lemmas are technical and given in the Appendix.

Lemma A. Suppose that Λ is an $SO(n-1)$-invariant subset of Σ_{n-1} and ν is zonal. Then for $\beta \in (0, 1/2)$ and $n > 2$,

$$\begin{align*}
\sup_{|k| \leq 1} \int_{\Lambda} |\theta \cdot \xi|^{-\beta} d\nu(\theta) \\
\leq c \int_{\Lambda} |\theta_n|^{-\beta} (1 - \theta_n^2)^{-\beta/2} d\nu(\theta), \quad c = c(n, \beta).
\end{align*}$$

(2.1)

Lemma B. Let ν be zonal, $n > 2$. Then conditions (1.4) and (1.5) are equivalent.

The next result will be used in the proof of the Theorem. By

$$\hat{\mu}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} d\mu(x)$$

we denote the Fourier transform of the finite Borel measure μ.
Theorem C ([12], p. 3). Let $\{\sigma_j\}_{j \in \mathbb{Z}}$ be a sequence of finite Borel measures on \mathbb{R}^n, which for integers $m \geq 0$ admit a splitting $\sigma_j = U_j^m + L_j^m$ into Borel measures U_j^m and L_j^m so that

\begin{align}
(2.2) & \quad U_j^m \quad \text{and} \quad L_j^m \quad \text{are supported in} \quad \{x : |x| < 2^j\}, \\
(2.3) & \quad \|L_j^m\| \leq c, \quad |\dot{L}_j^m(\xi)| \leq \frac{c \cdot 2^m}{(2^j|\xi|)^{\alpha}} \quad \text{for some} \quad \alpha > 0, \\
(2.4) & \quad \sup_j \sum_{m=0}^{\infty} \|U_j^m\| \leq c.
\end{align}

Here c and α are nonnegative constants, independent of m and j. If the operator

\[Tf = \sum_{j=-\infty}^{\infty} \sigma_j * f, \quad f \in C_c^\infty(\mathbb{R}^n), \]

extends to a bounded operator on $L^2(\mathbb{R}^n)$, then T extends to a bounded operator on $L^p(\mathbb{R}^n)$, $1 < p < \infty$.

2.2. Proof of the main results. We start with (a). Denote

\[\Gamma_m = \{\theta \in \Sigma_{n-1} : |\theta_n| \sqrt{1-\theta_n^2} < 2^{-m}\}, \quad \Gamma_m^c = \Sigma_{n-1} \setminus \Gamma_m, \]

and set $\sigma_j = U_j^m + L_j^m$, where the measures L_j^m and U_j^m are defined by

\begin{align}
(2.6) & \quad (L_j^m, g) = c_\nu \int_{2^j}^{2^{j+1}} \frac{dr}{r} \int_{\Gamma_m} g(r\theta) \, d\nu(\theta), \quad c_\nu = \frac{1}{\|\nu\| \log 2}, \\
(2.7) & \quad (U_j^m, g) = c_\nu \int_{2^j}^{2^{j+1}} \frac{dr}{r} \int_{\Gamma_m^c} g(r\theta) \, d\nu(\theta), \quad g \in C_0(\mathbb{R}^n) \quad \text{Suppose that} \quad f \in C_c^\infty(\mathbb{R}^n) \quad \text{Then the series} \quad T_\nu f(x) = \sum_{j \in \mathbb{Z}} (\sigma_j * f)(x) \quad \text{converges for each} \quad x \in \mathbb{R}^n. \quad \text{By Lemma B and by reasons which are similar to [10, p. 40],} \quad T_\nu \quad \text{extends to a bounded operator on} \quad L^2(\mathbb{R}^n). \]

Thus, by Theorem C, it suffices to check (2.2)–(2.4). The validity of (2.2) and the first condition in (2.3) is clear. To check the second inequality in (2.3), we note that

\[(L_j^m)^\wedge(\xi) = c_\nu \int_{\Gamma_m} d\nu(\theta) \left\{ \int_{2^j}^{2^{j+1}} e^{-2\pi i r\theta} \frac{dr}{r} \right\}. \]

The integral in brackets is dominated by $\log 2$ and also by $2^{-j} |\theta \cdot \xi|^{-1}$, Hence, it does not exceed $c \cdot 2^{-j} |\theta \cdot \xi|^{-\alpha}$ for any $\alpha \in (0, 1)$. Let $\alpha = 1/4$, $\xi' = \xi/|\xi|$. By Lemma A,

\[|(L_j^m)^\wedge(\xi)| \leq \frac{c}{(2^j|\xi|)^{1/4}} \int_{\Gamma_m} \frac{d|\nu|(|\theta|)}{|\theta \cdot \xi'|^{1/4}} \]

\[\leq \frac{c}{(2^j|\xi|)^{1/4}} \int_{\Gamma_m} \frac{d|\nu|(|\theta|)}{(\theta_n \sqrt{1-\theta_n^2})^{1/4}} \leq \frac{c \cdot 2^{m/4}}{(2^j|\xi|)^{1/4}}. \]
It remains to check (2.4). By (2.7),
\[\| U_j \| \leq c \int_{2^j}^{2^{j+1}} \frac{dr}{r} \int_{\Gamma_m} d|\nu|(\theta) \leq c \int_{\Gamma_m} d|\nu|(\theta). \]

Hence (see (2.5))
\[\sum_{m=0}^{\infty} \| U_j \| \leq c \sum_{m=0}^{\infty} \int_{\Gamma_m} d|\nu|(\theta) = c \int_{\Sigma_{n-1}} d|\nu|(\theta) \left(\sum_{m<\nu\theta_n} \frac{1}{\sqrt{1-\theta_n^2}} \right), \]

which gives (2.4). Statement (a) is proved.

In order to prove (b) we use Theorems A, B and E of [2] and follow the scheme from [2, p. 550]. It suffices to show that
\[|\hat{\sigma}_0(\xi)| \leq c |\xi| \text{ if } |\xi| \leq 2, \quad |\hat{\sigma}_0(\xi)| \leq c |\xi|^{-1/4} \text{ if } |\xi| > 2. \]

The inequality for $|\xi| \leq 2$ is clear because $\nu(\Sigma_{n-1}) = 0$. For $|\xi| > 2$, by Lemma A we obtain
\[|\hat{\sigma}_0(\xi)| \leq c \frac{c}{|\xi|^{1/4}} \int_{\Sigma_{n-1}} \frac{d|\nu|(\theta)}{|\theta \cdot \xi|^{1/4}} \leq c |\xi|^{-1/4}, \]

The Corollary is a consequence of the Theorem and Lemma B.

APPENDIX

Proposition. Let $n > 2$, and let A and ν be the same as in Lemma A. If $f \in L^1(\Sigma_{n-1}; d|\nu|)$, then
\[\int_A f(\vartheta) d\nu(\vartheta) = \frac{1}{\sigma_{n-2}} \int_A d\nu(\vartheta) \int_{\Sigma_{n-2}} f(\sqrt{1-\vartheta_n^2} \sigma + \vartheta_n e_n) d\sigma, \]

where $\sigma_{n-2} = |\Sigma_{n-2}| = 2\pi(n-1)/\Gamma((n-1)/2)$ and $d\sigma$ is the usual Lebesgue measure on Σ_{n-2}.

Proof. Let $\vartheta = (\sin \theta) \sigma + (\cos \theta) e_n$, $\sigma \in \Sigma_{n-2}$, $\cos \theta = \vartheta_n$. Then
\[\int_A f(\vartheta) d\nu(\vartheta) = \int_{SO(n-1)} d\gamma \int_A f(\gamma \vartheta) d\nu(\vartheta) \]

\[= \int_A d\nu(\vartheta) \int_{SO(n-1)} f((\sin \theta) \gamma \sigma + (\cos \theta) e_n) d\gamma \]

\[= \frac{1}{\sigma_{n-2}} \int_A d\nu(\vartheta) \int_{\Sigma_{n-2}} f((\sin \theta) \sigma + (\cos \theta) e_n) d\sigma, \]

which gives (3.1).
Proof of Lemma A. Let $\xi = (\tilde{\xi}, \xi_n)$, $\tilde{\xi} \in \mathbb{R}^{n-1}$. By (3.1),

$$
\int_{\Lambda} |\theta \cdot \xi|^{-\beta} d|\nu|(\theta) = \frac{1}{\sigma_{n-2}} \int_{\Lambda} d|\nu|(\theta) \int_{\Sigma_{n-1}} \sqrt{1 - \theta_n^2 \sigma \cdot \tilde{\xi} + \theta_n \xi_n}^{-\beta} d\sigma
$$

(3.2)

$$
= \frac{\sigma_{n-3}}{\sigma_{n-2}} \int_{\Lambda} A(\xi, \theta) d|\nu|(\theta),
$$

$$
A(\xi, \theta) = \int_{-1}^{1} |t \sqrt{(1 - \theta_n^2 (1 - \xi_n^2)) + \theta_n \xi_n}^{-\beta} (1 - t^2)^{n/2 - 2} dt.
$$

If $|\theta_n| \geq \sqrt{1 - \xi_n^2}$, then $|\xi_n| \geq \sqrt{1 - \theta_n^2}$, and by setting $b = (1 - \theta_n^2 (1 - \xi_n^2))/|\theta_n \xi_n| \leq 1$, we have

$$
A(\xi, \theta) \leq \int_{-1}^{1} (|\theta_n \xi_n| - |t| \sqrt{(1 - \theta_n^2) (1 - \xi_n^2)})^{-\beta} (1 - t^2)^{n/2 - 2} dt
$$

$$
\leq |\theta_n \xi_n|^{-\beta} \int_{-1}^{1} (1 - t^2)^{n/2 - 2} dt
$$

$$
\leq 2 |\theta_n|^{-\beta} (1 - \theta_n^2)^{-\beta/2} \int_{0}^{1} (1 - t^2)^{n/2 - 2} dt
$$

$$
= c |\theta_n|^{-\beta} (1 - \theta_n^2)^{-\beta/2}, \quad c = \text{const.}
$$

If $|\theta_n| < \sqrt{1 - \xi_n^2}$, i.e. $|\xi_n| < \sqrt{1 - \theta_n^2}$, we set $a = \frac{-\theta_n \xi_n}{\sqrt{(1 - \xi_n^2)(1 - \theta_n^2)}} \in (-1, 1)$ and get

$$
A(\xi, \theta) \leq [(1 - \theta_n^2)(1 - \xi_n^2)]^{-\beta/2} \int_{-1}^{1} (1 - t^2)^{n/2 - 2} dt
$$

(3.3)

$$
\leq |\theta_n|^{-\beta} (1 - \theta_n^2)^{-\beta/2} [I(a) + I(-a)],
$$

$$
I(a) = \frac{2^{\frac{\beta n/2 - 2}{2}} \beta (n/2 - 1, 1 - \beta)}{(a + 1)^{1+\beta-n/2}} F \left(\frac{n}{2} - 1, 2 - \frac{n}{2}; -\frac{a}{2}; \frac{a + 1}{2} \right).
$$

By the formulas 2.2.6.1 from [7] and 9.10.2.2 from [4] we obtain

$$
I(a) \leq c(n, \beta) < \infty, \quad 0 < \beta < 1/2.
$$

The same estimate holds for $I(-a)$.

Proof of Lemma B. Denote

$$
R(\xi_n, \theta_n) = \int_{-1}^{1} (1 - t^2)^{n/2 - 2} \log \frac{1}{|t \sqrt{(1 - \theta_n^2 (1 - \xi_n^2)) + \theta_n \xi_n}|} dt.
$$

As in (3.2),

$$
\int_{\Sigma_{n-1}} \log \frac{1}{|\theta \cdot \xi|} d|\nu|(\theta)
$$

(3.4)

$$
= \frac{\sigma_{n-3}}{\sigma_{n-2}} \int_{\Sigma_{n-1}} R(\xi_n, \theta_n) d|\nu|(\theta) \leq \frac{\sigma_{n-3}}{\sigma_{n-2}} K(\xi_n).
$$
Using the same notation as in the proof of Lemma A we have for $|\theta_n| \geq \sqrt{1 - \xi_n^2}$:

$$R(\xi_n, \theta_n) \leq \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} \log \frac{1}{|\theta_n \xi_n| (1 - |t|)} dt$$

$$\leq c_1 \log \frac{1}{|\theta_n \xi_n|} + 2 \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} \log \frac{1}{1 - t} dt$$

$$\leq c_1 \log \frac{1}{|\theta_n \xi_n|} + c_2$$

for $|\theta_n| < \sqrt{1 - \xi_n^2}$:

$$R(\xi_n, \theta_n) \leq \log \left(1 + \xi_n^2 \right) \left(1 - \xi_n^2 \right) \left(c_1 + \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} \log \frac{1}{|t - a|} dt \right)$$

$$\leq \log \frac{1}{|\theta_n \xi_n| \sqrt{1 - \theta_n^2}} \left[c_1 + c_2 \int_{-1}^{1} \frac{(1 - t^2)^{\nu/2 - 2}}{|t - a|^{1/4}} dt \right]$$

$$\leq c \log \frac{1}{|\theta_n \xi_n|} \sqrt{1 - \theta_n^2}$$

c being independent of a (see the estimate of the integral in (3.3)). Hence (1.4) implies (1.5). Conversely, if (1.5) holds, then (see (3.4)) $K(0) < \infty$ and $K(\pm 1) < \infty$. Since

$$K(0) = \int_{\Sigma_n} \log \frac{1}{|\theta_n|} d|\nu|(\theta) \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} dt$$

$$+ \int_{\Sigma_n} d|\nu|(\theta) \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} \log \frac{1}{|t|} dt$$

and

$$K(\pm 1) = \int_{\Sigma_n} \log \frac{1}{|\theta_n|} d|\nu|(\theta) \int_{-1}^{1} (1 - t^2)^{\nu/2 - 2} dt,$$

then

$$\int_{\Sigma_n} \log \frac{1}{|\theta_n|} d|\nu|(\theta) < \infty, \quad \int_{\Sigma_n} \log \frac{1}{|\theta_n|} d|\nu|(\theta) < \infty,$$

and (1.4) follows.

\[\square\]

ACKNOWLEDGMENT

We would like to thank Loukas Grafakos and Atanas Stefanov for sharing their knowledge of the subject with us. We are indebted to David K. Watson for giving us his preprints.

REFERENCES

SINGULAR INTEGRALS GENERATED BY ZONAL MEASURES

Department of Mathematics, University of Missouri, Columbia, Missouri 65211
E-mail address: ryabo@math.missouri.edu

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: boris@math.huji.ac.il