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ABSTRACT. We study LP-mapping properties of the rough singular integral
operator T, f(z) = fooo dr/r ‘fEn—l f(z — r0)dv(6) depending on a finite Borel
measure v on the unit sphere X,,_; in R”. It is shown that the condi-
tions sup|¢|=1 ‘fEn—l log (1/16 - €])d|v|(8) < oo, v(Ep—1) = O imply the LP-
boundedness of T, for all 1 < p < oo provided that n > 2 and v is zonal.

1. INTRODUCTION

Let ¥,,_1 be the unit sphere in R, Q € L1 (X,_,), fE L, Q(6)df = 0. Consider
the classical Calderén-Zygmund singular integral operator
(Taf)(w) = lim (T3 f) (%)

e—0
p—ro0

(1.1) Q(y/l))

= lim / f(z —y)————dy,
e e<lyl<p |yl

p—ro0

arising in a variety of problems (we refer the reader to the books [3], [9]-[11] and
the survey article [5] for more background information). It is well known (cf. [10],

p. 40) that if

1
(1.2) sup / |Q2(0)] log —— df < oo,

lel=1/x, s 16 -¢€]
then T is bounded from L?(IR™) into itself. In [5] L. Grafakos and A. Stefanov
asked the following

Question. Does (1.2) imply the LP-boundedness of Ty for some p # 27

In this note we show that (1.2) implies the LP-boundedness of Ty for all p €
(1,00) in the case n > 2, provided that Q is zonal (i.e. invariant under all rotations
about the z,-axis). We also consider a generalization of T with Q replaced by a
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finite Borel measure v on ¥,,_1 (cf. [8])

(T, f)(x) = lim (7527 f) (z)

p—o0

3 = lim /p dr/ (x — 10)dv(0).

e—0
p—o0

Definition. Let SO(n — 1) denote the group of rotations leaving the z,-axis
fixed. A finite Borel measure v on X, _; is called zonal if fEn_l Fyd)dv(¥) =

I _ f@W)dv(9) for all y € SO(n — 1) and f € LY (Z,_1;d|v)).
Our main result is

Theorem. Suppose that v is zonal, v(Xp_1) =0, n > 2.

(a) If

1
1.4 log —————d|v
. J.. ot
then the operator T,, initially defined by (1.3) on functions f € C°(R™), extends
to a bounded operator from LP into itself for all p € (1,00).
(b) Let f € LP(R™),1 < p< oo. If

/ 16,17P(1 = 62)=F2d|v|(0) < 0o for some B € (0,1/2),
PP

f) < oo,

then |[suPgc e pcoo |15 f |lp < cp [[fllp, 1 < p < 0o, and the limit in (1.3) exists

in the LP-norm and in the a.e. sense.

The proof of this theorem employs results of D. K. Watson [12], and of
J. Duoandikoetxea and J. L. Rubio de Francia [2].

Corollary. Suppose that v is zonal, v(X,_1) = 0, n > 2. Then T, ezlends o a
bounded operator from LP into ttself for allp € (1,00), provided

(1.5) sup/ |9 E=|d|1/|( ) < 0.

[¢l=1/%,
2. PROOF OF THE THEOREM AND THE COROLLARY

2.1. Auxiliary results. The proofs of the following two lemmas are technical and
given in the Appendix.

Lemma A. Suppose that A is an SO(n — 1)-invariant subset of L,_1 and v is
zonal. Then for 3 € (0,1/2) and n > 2,

sup [ 10-¢l"alw]0)
(2.1) lel=t1
= C/ 102177 (1 = 03)777%d|w|(6), = c(n, B).
A
Lemma B. Let v be zonal, n > 2. Then conditions (1.4) and (1.5) are equivalent.

The next result will be used in the proof of the Theorem. By

pe) = [ e dpge)

we denote the Fourier transform of the finite Borel measure p.
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Theorem C ([12], p. 3). Let {o;}jen be a sequence of finite Borel measures on
R™, which for integers m > 0 admit a spliting o; = U™ + LT" into Borel
measures U™ and L7 so that

(2.2) U™ and L7 are supported in {z : |z| < c Qj},
(2.3) L2 <e, L) < (;'TET;Q for some >0,
(24) a3 07 < .
m=0
Here ¢ and a are nonnegative constants, independent of m and j. If the operator
Ti= S oyef feCEEY,
j=—o0

extends to a bounded operator on L?(R™), then T extends to a bounded operator
on LP(R"), 1 < p < co.

2.2. Proof of the main results. We start with (a). Denote

(2.5) Fpm={0€X,_1: |0\ /1-02<27™}, T}, =X,_1\Tn,
and set o; = U™ + LT", where the measures LJ* and U;" are defined by
2j+1 1

dr/
— g(ré)dv(8), ¢, = ———=,
Y R To]log2

23+1

2o a=o |

d
(2.7) wpa=a [ L[ s,
g € Co(R™). Suppose that f € C°(R"). Then the series
T,f(x) =Y (0j % f)(z)

JEL

J

converges for each z € R™. By Lemma B and by reasons which are similar to [10,
p. 40], T, extends to a bounded operator on L?(R™).

Thus, by Theorem C, it suffices to check (2.2)—(2.4). The validity of (2.2) and
the first condition in (2.3) is clear. To check the second inequality in (2.3), we note

that
2j+1 d’]"
myA — —27ird-£ 7
(LJ)(@_CV/F;CZV(Q){AJ e r}'

The integral in brackets is dominated by log 2 and also by 277|8 - £|~!. Hence,
it does not exceed ¢ (27710 - €)= for any a € (0,1). Let o = 1/4, & = ¢/|€]. By

Lemma A,
IO S s [ et

(2]'|£|)1/4 e |g.£/|1/4
< c / d|V|(6) < c 2m/
= (ENY Jre, (16a1\/T—02)1/4 = (27D



748 DMITRY RYABOGIN AND BORIS RUBIN

It remains to check (2.4). By (2.7),

923+1

m dr
lopl<e [ 5[ adoyse [ v,
23 T Jrn T

Hence (see (2.5))

Slopized [av@=c[ davie)| X

m<log,(1/|6n]/1-62)

n—

dlv|(0) < oo,

1
<C 10 O —
= / S0,/ 02

which gives (2.4). Statement (a) is proved.
In order to prove (b), we use Theorems A, B and E of [2] and follow the scheme
from [2, p. 550]. It suffices to show that

G0(€)] < clel if [€]<2,  [6a(€)] < |7t f¢] > 2.

The inequality for |¢] < 2 is clear because v(X,_1) = 0. For [¢]| > 2, by Lemma A
we obtain

A ‘ dlv|(6)
o< iz [ e

¢ dlv|(6) —1/4
< <c .
= |£|1/4 /X\:n_l (|0n| /1_6721)1/4 — |£|

The Corollary is a consequence of the Theorem and Lemma B.

APPENDIX

Proposition. Let n > 2, and let A and v be the same as in Lemma A. If
f €LY (Zn_1;d|v]), then

1

On—2

(3.1) /Af(ﬁ)du(z?): /Adu(ﬁ)/zn_z F(/1 =020 4 Y,e,)do,

where 0,9 = |Sp_o| = 20*=V/2T((n — 1)/2) and do is the usual Lebesque mea-
sure on X, _o.

Proof. Let ¥ = (sinf)o + (cosf)e,, o € Xp_a, cosf = 9J,. Then

Jroa= [ ar [ samao

= /Ady(ﬂ) /So(n_l)f((sin B)yo + (cos B)en)dy

_ ! /Adyw)/zw F((sin 6)c + (cos B)en )do,

On—2

which gives (3.1). O
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Proof of Lemma A. Let & = (é,gn), £ e R 1 By (3.1),

/A 16 €1"dlu|(6)

_ 0_1 /d|y|(6)/ WI—02 o€+ 0,6, Pdo
(3.2) A Bn2
=223 [ Ate.0)d|v|(6
22 [ A€ 0)dul().

1
0= [ I/T= 0 =€)+ a1 = £/t
-1
If |0, > /1 — €2, then |&,| > /1 — 62, and by setting b=1/(1 — 62)(1 — £2)/|0nén|

< 1, we have
1 2\n/2-2
(1—12) 12244
M0 s [ e ey

O
< |Bpénl™"? (—<
<™ | S <

Y1 — )22t
<216,177(1 —GZ)_ﬁﬂ/ W
; —

=c|0,]7P(1—62)7P/2 ¢ = const.

_Hn n
If |0, < /1 —¢€2, 16 |&n] < /1 —02%, weset a= a0 52)5(1 7 €(-1,1)

and get
1 (1 _ 42yn/2-2
A(E,0) < [(1-02)(1—¢€2)]7P12 /_1 Ulf_)—awdt
(3.3) < 10n]77(1 = 62)7/2[1(a) + I(~a)],
Y N B
I(a)_/_l—(a—t)ﬁ .

By the formulas 2.2.6.1 from [7] and 9.102.2 from [4] we obtain
2M2=2B(nj2 —1,1=8) _ (n n n a+1
I(a) = ’ Fl2_192-22 poT
(a) (a+ 1)t+6-n/2 <2 ’ 272 P 2 )
<e(n,f)<o0, 0<p<1/2
The same estimate holds for I(—a). O

Proof of Lemma B. Denote

1
_ _ 42\n/2-2
R(&n;gn)—/_l(l %) log It (1—9721)(1_6721)+6n£n|dt
Asin (3.2),
1
log ——d|v|(6)
0.
(3.4) /E .

=222 [ Rl 0| 9) S PR ()

On—2 n—2
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Using the same notation as in the proof of Lemma A we have for |0,| > /1 — &2 :

1
1
R(&n, 0, S/ 1 —¢2 ”/2_2log—dt
Enl)s | (=1 XA
1
<ell 1 — /22 dt
Cloglf)&nl /( ) les 7

< ec1log

for |6, < /1 —&2:

R(&,,0,) <log

|9n|f1 —

1
— 1222 og . aldt]

Vi 1—9’ (1-¢ [
1 _ 42\n/2-2
(1 t*)
_ —dt
|9n|\/1_9,% [Cl+cz/_1 [t —alt/4
1
16 1\/1 =62

¢ being independent of a (see the estimate of the integral in (3.3)). Hence
(1.4) implies (1.5). Conversely, if (1.5) holds, then (see (3.4)) K(0) < oo and
K (+£1) < co. Since

1 1
K(O):/E longM(Q)/l(l—tz)"/z_zdt

n

1
+/ d|u|(6)/ (1 —t)n/2= 2log| |dt
Y1 -1

< log

< clog

and
1 1
K(:I:l):/ log —d|1/|(9)/ (1 —t%)n/2=24,
IR (O 1
then
[ tos———sdilit) < [ tow i) <
o v 00, og —d|v 00,
Sai1 V1= 02 Snon 12
and (1.4) follows. O

ACKNOWLEDGMENT

We would like to thank Loukas Grafakos and Atanas Stefanov for sharing their
knowledge of the subject with us. We are indebted to David K. Watson for giving
us his preprints.

REFERENCES

[1] Calderdén, A.P. and Zygmund, A., On singular integrals, Amer. J. Math., 78 (1956), 289—
309. MR 18:894a

[2] Duoandikoetxea, J. and Rubio de Francia, J.L., Maximal and singular integral operators via
Fourier transform estimates, Invent. Math. 84 (1986), 541-561. MR 87{:42046

[3] Garcia-Cuerva, J. and Rubio de Francia, J.L.., Weighted norm inequalities and related topics,
Notas de Matem. 116, North-Holland, Amsterdam, 1985. MR 87d:42023

[4] Gradshteyn, I.S. and Ryzhik, I.M., Table of integrals, series, and products, Academic Press,
New York, 1980. MR 81g:33001



SINGULAR INTEGRALS GENERATED BY ZONAL MEASURES 751

[5] Grafakos, L. and Stefanov, A., Convolution Calderén-Zygmund singular integral operators

with rough kernels, in Analysis of Divergence, Control and Management of Divergent pro-
cesses, (W. O. Bray, C. V. Stanojevi¢ eds.), Birkhauser, Boston, (1999), 119-143. CMP
2000:09

Grafakos, L.. and Stefanov, A., LP bounds for singular integrals and maximal singular integrals
with rough kernels, Indiana Univ. Math. J. 47 (1998), 455-469. MR 99i:42019

[7] Prudnikov, A.P., Brychkov, Yu. A. and Marichev O. 1., Integrals and series, Nauka, Moscow,

1981. MR 83b:00009

[8] Ryabogin, D. and Rubin, B., Singular integrals generated by finite measures, Preprint No. 1,

1999, Hebrew University.

| Stein, E.M., Harmonic analysis, real variable methods, orthogonality, and oscillation inte-

grals, Princeton Univ. Press, Princeton, N.J.; 1993. MR 95¢:42002

| Stein, E.M., Singular integrals and differentiability properties of functions, Princeton Univ.

Press, Princeton, N.J., 1970. MR 44:7280

[11] Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton

Univ. Press, Princeton, N.J., 1971. MR 46:4102

[12] Watson, D.K., Norm inequalities for rough Calderén-Zygmund operators, having no Fourer

transform decay, 1994, preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MI1ssOURI, COLUMBIA, MISSOURI 65211
E-mail address: ryabs@math.missouri.edu

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM 91904, ISRAEL
E-mail address: boris@math.huji.ac.il



