1.2.1 Well-Ordering Property of \(\mathbb{N} \): Every nonempty subset of \(\mathbb{N} \) has a least (smallest) element.

1.2.2 Principle of Mathematical Induction:
Let \(S \) be a subset of \(\mathbb{N} \) that possesses the two properties:
1. The number 1 in \(S \).
2. For every \(k \) in \(\mathbb{N} \), if \(k \) in \(S \), then \(k + 1 \) in \(S \).
Then we have \(S = \mathbb{N} \).

* Proof 1.2.1 implies 1.2.2

1.3.8 Theorem The set \(\mathbb{N} \times \mathbb{N} \) is denumerable

1.3.10 Theorem The following statements are equivalent:
(a) \(S \) is a countable set.
(b) There exists a surjection of \(\mathbb{N} \) onto \(S \).
(c) There exists an injection of \(S \) into \(\mathbb{N} \).

1.3.11 Theorem The set \(\mathbb{Q} \) of all rational numbers is denumerable.

1.3.12 Theorem If \(A_m \) is a countable set for each \(m \) in \(\mathbb{N} \), then the union \(A = \bigcup_{m=1}^{\infty} A_m \) is countable.

* Proof of Theorem 1.3.12

1.3.13 Cantor’s Theorem If \(A \) is any set, then there is no surjection of \(A \) onto the power set of \(A \), the Set of all subsets of \(A \). [not proof]

2.1.9 Theorem If \(a \) in \(\mathbb{R} \) is such that \(0 \leq a < e \) for every \(e > 0 \), then \(a = 0 \).

* Proof of Theorem 2.1.9

Arithmetic-Geometric Mean Inequality: If \(a, b \geq 0 \), then \(\sqrt{ab} \leq \frac{a+b}{2} \); equality holds iff \(ab = 0 \).

*Proof of Arithmetic-Geometric Mean Inequality.

2.2.3 Triangle Inequality If \(a, b \) in \(\mathbb{R} \), then \(|a + b| \leq |a| + |b| \); equality holds iff \(ab \geq 0 \).

*Proof of Triangle Inequality.

2.2.4 Corollary If \(a, b \) in \(\mathbb{R} \), then \(|a| - |b| \leq |a - b| \); equality holds iff \(ab \geq 0 \).

*Proof of Triangle Inequality corollary 2.2.4.

2.3.3 Lemma A number \(u \) is the supremum of a nonempty subset \(S \) of \(\mathbb{R} \) if and only if \(u \) satisfies the conditions:
1. \(s \leq u \) for all \(s \) in \(S \).
2. If \(v < u \), then there exists \(s \) in \(S \) such that \(v < s \)
2a) if \(0 < e \), then there exists \(s \) in \(S \) such that \(u - e < s \)
2b) if \(n \) in \(\mathbb{N} \), then there exists \(s \) in \(S \) such that \(u - \frac{1}{n} < s \)

*The proof of 2.3.3 and of analogous results for infimums and the discussion above this lemma are important.

2.3.6 The Completeness Property of \(\mathbb{R} \) Every nonempty set of real numbers that has an upper bound also has a supremum in \(\mathbb{R} \). (Statement, use but not proof)
2.4.1 Examples
Suppose that A and B are nonempty subsets of R that satisfy the property: for all a in A and b in B, a ≤ b, Then Sup(A) ≤ Inf(B). (The result and its proof are important.)

2.4.2 Archimedean Property
If x in R, then there exists n in N such that x ≤ n.

2.4.4 Corollary If S = \{\frac{1}{n} | n \in N\} then Inf(S) = 0.

2.4.5 Corollary If t > 0, there exists n in \mathbb{N} such that 0 < 1/n < t.

2.4.6 Corollary If y > 0, there exists n in \mathbb{N} such that n - 1 ≤ y < n.

*Proof of above results 2.4.3 and 2.4.5 the Archimedean Properties of R.

2.4.8 The Density Theorem
If x and y are any real numbers with x < y, then there exists a rational number r in Q such that x < r < y.

2.5.2 Nested Intervals Property of R: Let \(I_n = [a_n, b_n] \) be a sequence of nested, closed intervals of R, with \(I_{n+1} \) contained in \(I_n \) then \(I = \bigcap_{n=1}^{\infty} I_n \) is non-empty.

We actually showed that \(I = [\alpha, \beta] \) where \(\alpha = \text{Sup}(a_n) \) and \(\beta = \text{Inf}(b_n) \), but you do not need to know this proof.

2.5.4 Theorem
The set R of real numbers is not countable

*Proof of 2.5.4

Corollary: the set R\(\setminus \mathbb{Q} \) of irrational numbers is uncountable.

*Proof of above corollary of 2.5.4

3.1.4 Uniqueness of Limits
A sequence in R can have at most one limit.

*Proof of Theorem 3.1.4

3.1.9 Theorem
Let \(X = (x_n) \) be a sequence of real numbers and let m in N. Then the m-tail \(X_m = (x_{m+n}) \) of X converges if and only if X converges. In this case, \(\lim X_m = \lim X \).

*Proof of Theorem 3.1.9

3.2.2 Theorem
A convergent sequence of real numbers is bounded.

*Proof of Theorem 3.2.2

3.2.3 Theorem
(a) Let \(X = (x_n) \) and \(Y = (y_n) \) be sequences of real numbers that converge to x and y, respectively, and let c in R. Then the sequences \(X + Y, X - Y, XY, \) and \(cX \) converge to \(x + y, x - y, xy, \) and \(cx \), respectively.
(b) If \(X = (x_n) \) converges to x and \(Z = (z_n) \) is a sequence of nonzero real numbers that converges to z and if \(z \neq 0 \), then the quotient sequence \(X/Z \) converges to \(x/z \).

The above results are called the Algebra of Limits. Their proofs are illustrative, but are not required.

3.2.4 Theorem
If \(X = (x_n) \) is a convergent sequence of non-negative real numbers, then \(\lim(x_n) \geq 0 \).

*Proof of Theorem 3.2.4
3.2.5 Theorem If \(X = (x_n) \) and \(Y = (y_n) \) are convergent sequences of real numbers and if \(x_n \leq y_n \) for all \(n \) in \(\mathbb{N} \), then \(\lim x_n \leq \lim y_n \).

*Proof of Theorem 3.2.5

3.2.7 Squeeze Theorem Suppose that \(X = (x_n) \), \(Y = (y_n) \), and \(Z = (z_n) \) are sequences of real numbers such that \(x_n \leq y_n \leq z_n \) for all \(n \) in \(\mathbb{N} \), and that \(\lim X = \lim Z \). Then \(Y \) is convergent and \(\lim Y = \lim X = \lim Z \).

The proof of the squeeze theorem is interesting but is not required.

3.2.9 Theorem Let the sequence \(X = (x_n) \) converge to \(x \). Then the sequence \((|x_n|) \) of absolute values converges to \(|x| \).

*Proof of Theorem 3.2.9

3.2.10 Theorem Let \(X = (x_n) \) be a sequence of non-negative real numbers that converges to \(x \). Then the sequence \((\sqrt{x_n}) \) of positive square roots converges and its limit is \(\sqrt{x} \).

*Proof of Theorem 3.2.10

3.2.11 Theorem Let \(X = (x_n) \) be a sequence of positive real numbers such that \(L = \lim \left(\frac{2^{n+1}}{x_n} \right) \) exists. If \(L < 1 \), then \(X \) converges and \(\lim X = 0 \).

In the homework we showed if the ratio limit \(L > 1 \), then \(X \) diverges. The case \(L = 1 \) is inconclusive. Both the constant sequence \((1) \) and the divergent sequence \((n) \) have ratio limit \(L = 1 \). The ratio limit result is important but the proof is not.

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is convergent if and only if it is bounded. Further, if \(X = (x_n) \) is increasing and bounded above, then \(\lim X = \sup(x_n) \) and if \(Y = (y_n) \) is decreasing and bounded below, then \(\lim Y = \inf(y_n) \).

*Theorem 3.3.2 (MCT) and its proof are very important.

3.4.2 Theorem If a sequence \(X = (x_n) \) of real numbers converges to a real number \(x \), then any subsequence \(X' = (x_{n_k}) \) of \(X \) also converges to \(x \).

*Proof of Theorem 3.4.2.

3.4.4 Theorem Let \(X = (x_n) \) be a sequence of real numbers, Then the following are equivalent:

(i) The sequence \(X \) does not converge to \(x \) in \(\mathbb{R} \).

(ii) There exists an \(\epsilon_0 > 0 \) such that for any \(k \) in \(\mathbb{N} \), there exists \(n_k \) in \(\mathbb{N} \) such that \(n_k \geq k \) and \(|x_{n_k} - x| \geq \epsilon_0 \).

(iii) There exists an \(\epsilon_0 > 0 \) and a subsequence \(X' = (x_{n_k}) \) of \(X \) such that for all \(k \) in \(\mathbb{N} \), \(|x_{n_k} - x| \geq \epsilon_0 \).

*Proof of Theorem 3.4.4. The next result is an immediate consequence of 3.4.4 and 3.2.2.

3.4.5 Divergence Criteria If a sequence \(X = (x_n) \) of real numbers has either of the following properties, then \(X \) is divergent.

(i) \(X \) has two convergent subsequences whose limits are not equal.

(ii) \(X \) is unbounded.

3.4.7 Monotone Subsequence Theorem If \(X = (x_n) \) is a sequence of real numbers, then there is a subsequence of \(X \) that is monotone.
3.4.8 The Bolzano-Weierstrass Theorem

A bounded sequence of real numbers has a convergent subsequence.

*Theorem 3.4.8. is an immediate consequence of Theorem 3.4.7 and the MCT. You do not need to know the alternative proof using the Nested Interval Property.

3.4.11 Theorem

If \((x_n)\) is a bounded sequence of real numbers, then the following statements for a real number \(x^*\) are equivalent.

(a) \(x^* = \text{lim sup}(x_n)\).

(b) If \(e > 0\), there are at most a finite number of \(n \in \mathbb{N}\) such that \(x^* + e < x_n\), but an infinite number of \(n \in \mathbb{N}\) such that \(x^* - e < x_n\).

(c) If \(u_m = \sup(x_n : n \geq m)\); then \(x^* = \inf(u_m) = \lim(u_m)\).

(d) If \(S\) is the set of subsequential limits of \((x_n)\) then \(x^* = \sup S\).

* Also, be able to state the analogous characterizations of \(x_* = \text{lim inf}(x_n)\).

3.5.3 Lemma

If \(X = (x_n)\) is a convergent sequence of real numbers, then \(X\) is a Cauchy sequence.

*Proof of Theorem 3.5.3

3.5.4 Lemma

A Cauchy sequence of real numbers is bounded.

*Proof of Theorem 3.5.4

3.5.5 Cauchy Convergence Criterion

A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

*Proof of 3.6.5

3.5.8 Theorem

Every contractive sequence is a Cauchy sequence, and therefore is convergent.

You do not need to know the proof of Theorem 3.5.8 or the estimates on rates of convergence in Theorem 3.5.10.