KSU, Fall 2015

Pick's Formula

Let's call a point in the plane a lattice (or an integer) point if both of its coordinates are integers. Let P be a lattice polygon in the plane, that is, a polygon all of whose vertices are lattice points. Let I be the number of lattice points that are strictly inside P and B be the number of lattice points that are on the boundary of P. The goal of this homework assignment is to prove Pick's formula which expresses the area A of P in terms of I and B :

$$
A=I+\frac{B}{2}-1
$$

Problem 1. For the polygon below, compute I, B, and A directly, not using Pick's formula. Check that Pick's formula is satisfied.

Problem 2. Let P be a lattice rectangle with the sides parallel to the coordinate axes. We can then assume that the vertices of P are at the points $(0,0),(a, 0),(0, b)$, and (a, b) for some integers a and b. Check that Pick's formula holds for P.

Problem 3. Now let T be a lattice triangle with two sides parallel to the coordinate axes. We can then assume that the vertices of T are at the points $(0,0),(a, 0)$, and $(0, b)$ for some integers a and b. Check that Pick's formula holds for T. Follow the plan: Consider a rectangle P from previous problem. Let I_{P}, B_{P} and A_{P} be the numbers of interior lattice points, boundary lattice points, and the area for P, while I_{T}, B_{T}, and A_{T} be the corresponding parameters for T. Let c be the number of lattice points on the hypothenuse of T (not counting the vertices). From Problem 2, we already know that $A_{P}=I_{P}+B_{P} / 2-1$. Express A_{P}, I_{P}, and B_{P} in terms of I_{T}, B_{T}, A_{T}, and c. Plug into Pick's formula for P. Obtain Pick's formula for T.

Problem 4. Next, let T be an arbitrary lattice triangle. Check that Pick's formula holds for T. Follow the plan: Consider a rectangle P whose sides are parallel to the coordinate axes, so that P shares one of the vertices with T and two other vertices of T are on the sides of P. Notice that P is broken into four triangles, T, T_{1}, T_{2}, and T_{3}, where the last three are all of the kind considered in Problem 3.

Let A, I, B be the area and the numbers of the interior and boundary lattice points for T and $A_{1}, I_{1}, B_{1}, A_{2}, I_{2}, B_{2}, A_{3}, I_{3}, B_{3}$ be the corresponding parameters for T_{1}, T_{2}, and T_{3}. We already know that Pick's formula holds for P and the three triangles. Expressing the parameters for P in terms of the parameters for the triangles, prove Pick's formula for T.

Problem 5. Assume Pick's formula holds for a polygon P. Show that it holds for the polygon $P \cup T$, where T is a triangle and P and T share a side. Hint: This is very similar to Problem 2. Denote the number of lattice points on the common side by c.

Problem 6. Use the result from previous problem and the fact that any lattice polygon P (not necessarily convex) can be broken into finitely many lattice triangles, so that any two of them either do not overlap or share a side, to conclude that Pick's formula holds for any lattice polygon .

Problem 7. Let M be the centroid of a triangle $A B C$. Show that if you connect M to the vertices of $A B C$ you will break $A B C$ into three triangles of equal area. Show that no other point N inside $A B C$ has this property. This problem does not require Pick's formula. Use some simple plane geometry here.

Problem 8. Let $A B C$ be a lattice triangle that has just one integer point inside and the only lattice points on its boundary are the vertices. Show that this interior lattice point is the centroid of $A B C$. Hint: Use Pick's formula $(A=I+B / 2-1)$ and the previous problem.

Problem 9. Pick's formula, in particular, says, that in order for a polygon to have a large area, it needs to have a large overall number of lattice points inside and on the boundary. Show that this is not the case in 3D, that is, a 3D polytope with fixed I and B can have a huge volume. For this, consider the tetrahedron T with the vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(1,1, c)$, where c is a positive integer.

Bonus 1. Let P be a lattice polygon of area A_{P} with I_{P} interior lattice points and B_{P} lattice points on the boundary, with k polygonal lattice holes. Adjust Pick's formula so that it works for such a polygon. Prove the formula.

