KSU, Fall 2015

Bricks and Boxes

Here A, B, C, a, b, c are postive integers.
Problem 1. Show that a $5 \times 6 \times 1$ box can be filled with $2 \times 3 \times 1$ bricks but cannot be filled with such bricks that are in parallel position.

Problem 2. Suppose that $b>a$, but b is not a multiple of a. Show that a $(a+b) \times$ $a b \times 1$ box can be filled with $a \times b \times 1$ bricks but cannot be filled with such bricks that are in parallel position.
Problem 3. We say that an $A \times B \times C$ box is a multiple of an $a \times b \times c$ brick if there are integers p, q and r such that $p a, q b, r c$ is a rearrangement of A, B, C.
(a) Is the $10 \times 16 \times 17$ box a multiple of the $1 \times 2 \times 4$ brick?
(b) Let $A \times B \times C$ be a multiple of $a \times b \times c$. Show that one can fill $A \times B \times C$ box with $a \times b \times c$ bricks so that all the bricks are in parallel position.

Problem 4. Recall that for a real number θ

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

Use this definition to compute (a) $e^{\pi i}$, (b) $e^{\frac{\pi i}{2}}$, and (c) $e^{2 \pi i}$.
Problem 5. Show that $e^{\frac{2 A \pi}{a} i}=1$ exactly when A is a multiple of a.
Problem 6. Let A and $a>1$ be positive integers. Use formula for the sum of the geometric sequence to compute

$$
S(A):=e^{\frac{2 \pi}{a} i}+e^{\frac{2 \cdot 2 \pi}{a} i}+e^{\frac{3 \cdot 2 \pi}{a} i}+\cdots+e^{\frac{A \cdot 2 \pi}{a} i} .
$$

Show that $S(A)$ equals zero if and only if A is a multiple of a.
Problem 7. Let N and $a>1$ be positive integers. Use either the previous problem or sum of geometric sequence formula to show that

$$
e^{\frac{2 \pi N}{a} i}+e^{\frac{2 \pi(N+1)}{a} i}+e^{\frac{2 \pi(N+2)}{a} i}+\cdots+e^{\frac{2 \pi(N+a-1)}{a} i}=0 .
$$

Using the definition for $S(A), S(B)$, and $S(C)$ from problem 6, we see that their product equals

$$
S(A) S(B) S(C)=\sum_{k=1}^{A} \sum_{l=1}^{B} \sum_{m=1}^{C} e^{\frac{2 \pi i(k+l+m)}{a}},
$$

where each triple (k, l, m) corresponds to a $1 \times 1 \times 1$ cubie in the $A \times B \times C$ box. Suppose that the $A \times B \times C$ box is filled with $a \times b \times c$ bricks. Since each of such bricks can be filled with $a \times 1 \times 1$ bricks, the same is true about the initial box. Then in the summation above we can collect terms that correspond to one such brick. By Problem 7 these terms will sum up to zero, which proves that $S(A) S(B) S(C)=0$.

Problem 8. Given that $S(A) S(B) S(C)=0$ prove that one of A, B, or C is a multiple of a.

We have proved

Theorem 1. If the $A \times B \times C$ box can be filled with $a \times b \times c$ bricks then a divides one of A, B, or C and same is true about b and c.

Note that this does not mean that $A \times B \times C$ is a multiple $a \times b \times c$. For example, the $5 \times 6 \times 1$ cube can be filled with $2 \times 3 \times 1$ bricks, although one is not a multiple of the other.

Problem 9. We say that a brick $a \times b \times c$ is harmonic if we can rearrange the numbers a, b, and c so that the first of them divides the second and the second divides the third. Decide whether (a) $6 \times 2 \times 18$ and (b) $12 \times 2 \times 8$ are harmonic.

Problem 10. Assume that a $A \times B \times 1$ box is filled with harmonic $a \times b \times 1$ bricks where a divides b. Show that $A \times B \times 1$ is a multiple of $a \times b \times 1$. (Use the Theorem to show that b divides one of A, B and common sense to explain why a divides both A and B).

Problem 11. Now we will address a 3D version of the previous problem. Assume that an $A \times B \times C$ box is filled with harmonic $a \times b \times c$ bricks where a divides b and b divides c. Prove that $A \times B \times C$ box is a multiple of the $a \times b \times c$ brick. For this, use the Theorem to conclude that c divides one of A, B, C and suppose that c divides C. Next, consider an $A \times B \times 1$ face of the box and explain why it can be filled with $a \times b \times 1$ bricks. The result now follows from the previous problem.

Problem 12. Show that if a brick $a \times b \times c$ with $a \leq b \leq c$ is not harmonic then there is an $A \times B \times C$ box which can be filled with $a \times b \times c$ bricks, without being a multiple of the brick. (Hint: If a does not divide b, try $(a+b) \times a b \times c$ box. What to do if a divides b, but b does not divide c ?)

