Proving Inequalities

Example 1. Show

$$
\frac{x^{2}+y^{2}}{2} \geq x y
$$

for every value of x and y.
Here is a chain of equivalent inequalities.

$$
\begin{aligned}
\frac{x^{2}+y^{2}}{2} & \geq x y \\
x^{2}+y^{2} & \geq 2 x y \\
x^{2}-2 x y+y^{2} & \geq 0 \\
(x-y)^{2} & \geq 0
\end{aligned}
$$

The last inequality in this chain obviously holds for all values of x and y. Note that the inequality turns into equality if and only if $x=y$.

Example 2. Show that the geometric mean of two positive non-negative a and b does not exceed their arithmetic mean:

$$
\frac{a+b}{2} \geq \sqrt{a b}
$$

When does this inequality turn into equality?
Here is a chain of equivalent inequalities reducing the original inequality to a trivial one.

$$
\begin{aligned}
\frac{a+b}{2} & \geq \sqrt{a b} \\
a+b & \geq 2 \sqrt{a b} \\
(\sqrt{a})^{2}-2 \sqrt{a} \sqrt{b}+(\sqrt{b})^{2} & \geq 0 \\
(\sqrt{a}-\sqrt{b})^{2} & \geq 0
\end{aligned}
$$

This turns into equality when $\sqrt{a}=\sqrt{b}$, that is, $a=b$.
Example 3. Let a, b be non-negative numbers. Show that $a \geq b$ if and only if $a^{2} \geq b^{2}$.
Here we have $a^{2}-b^{2}=(a-b)(a+b)$ and $a+b \geq 0$. To prove the direct implication we suppose that $a \geq b$. Then $a-b \geq 0$ and hence $a^{2}-b^{2}=(a-b)(a+b) \geq 0$. For the reverse implication, suppose that $a^{2} \geq b^{2}$. Then $a^{2}-b^{2} \geq 0$ and hence $a-b=\frac{\left(a^{2}-b^{2}\right)}{(a+b)} \geq 0$, which implies that $a \geq b$. Note that we can only divide by $a+b$ if $a+b$ is non-zero, but if $a+b=0$ both a and b would have to be zero (by assumption a and b are non-negative) and in this case we trivially have the desired conclusion that $a \geq b$.

Example 4. Show that the arithmetic mean of two numbers a and b does not exceed their quadratic mean:

$$
\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

To get rid of the radical it would be nice to square both sides, but we have to be careful here. For example, squaring a true number inequality $-3<2$ we obtain $9<4$! This wouldn't happen if both sides of the original inequality were non-negative as we showed in previous example.

Let's look at the inequality for the means. The right-hand side is always greater than or equal to zero, while the left-hand side could be negative, but if it is negative, the inequality is obvious - we have something negative on the left which is obviously less than something non-negative on the right. Now, let's assume that both sides are non-negative and square the inequality:

$$
\begin{aligned}
\frac{a+b}{2} & \leq \sqrt{\frac{a^{2}+b^{2}}{2}} \\
\frac{a^{2}+2 a b+b^{2}}{4} & \leq \frac{a^{2}+b^{2}}{2} \\
a^{2}+2 a b+b^{2} & \leq 2 a^{2}+2 b^{2} \\
a^{2}-2 a b+b^{2} & \geq 0 \\
(a-b)^{2} & \geq 0
\end{aligned}
$$

Notice that combining two last examples, for positive a and b we get an inequality for all three means:

$$
\sqrt{a b} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

which turns into equality if and only if $a=b$.
Example 5. Show that for all positive x, y we have

$$
\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}
$$

Multiplying both sides by $x y(x+y)$ we get:

$$
\begin{aligned}
y(x+y)+x(x+y) & \geq 4 x y \\
x^{2}+y^{2}+2 x y & \geq 4 x y \\
(x-y)^{2} \geq 0 &
\end{aligned}
$$

here last inequality clearly holds true for all values of x and y.
Example 6. Show that for all x, y, z we have

$$
x^{2}+y^{2}+z^{2} \geq x y+y z+z x .
$$

When does this inequality turn into equality?
Multiplying both sides by 2 we get:

$$
\begin{aligned}
x^{2}+y^{2}+y^{2}+z^{2}+x^{2}+z^{2} & \geq 2 x y+2 y z+2 x z \\
(x-y)^{2}+(y-z)^{2}+(z-x)^{2} & \geq 0
\end{aligned}
$$

This sum equals zero if and only if $x-y=0, y-z=0, z-x=0$, that is, $x=y=z=0$.

Homework Problems

Problem 1. Prove for positive a, b, c, d

$$
\sqrt{(a+c)(b+d)} \geq \sqrt{a b}+\sqrt{c d}
$$

Problem 2. Show for all real x and y that

$$
x^{2}+y^{2}+1 \geq x y+x+y .
$$

Problem 3. Given that $(a+b+c)=0$ show that $a b+b c+a c \leq 0$.
Problem 4. Show that for all $a, b, c \geq 0$ we have

$$
(a+b)(a+c)(b+c) \geq 8 a b c
$$

Problem 5. Show that for any real numbers $x_{1}, x_{2}, y_{1}, y_{2}$

$$
\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2} \leq\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)
$$

Problem 6. Show that for $a, b, c \geq 0$

$$
a b+b c+c a \geq a \sqrt{b c}+b \sqrt{a c}+c \sqrt{a b} .
$$

Hint: Multiply this through by 2 and then collect the terms with a, b, and c.
Problem 7. Show that for any choice of real numbers a, b, c

$$
a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)
$$

Hint: We proved in class that for any real numbers x, y, z

$$
x^{2}+y^{2}+z^{2} \geq x y+y z+z x .
$$

Use this inequality twice.
Problem 8. Show that for positive a, b, c

$$
\frac{a b}{c}+\frac{a c}{b}+\frac{b c}{a} \geq a+b+c
$$

