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The Pigeonhole Principle

The pigeonhole principle sounds very simple and obvious: If we put N + 1 pigeons
into N pigeon holes, there will be at least one hole with at least 2 pigeons. Similarly,
if we must put Nk + 1 pigeons into N pigeon holes, at least one of the will contain
at least N + 1 pigeons. Indeed, otherwise the overall number of pigeons would be at
most Nk . This simple observation helps solve a range of very different problems.

Example 1. Over one million people live in the Cleveland area. Show that there are
two people with exactly the same numbers of hairs on their heads. (It is known that
nobody can have more than a million hairs on their head.)

We use the pigeonhole principle here. The pigeonholes are the possible numbers of
hairs, so we have 1000001 pigeonholes and over 1000001 pigeons (people) to put in
those pigeonholes. Since the number of pigeons is larger than the number of holes,
there will be at least two pigeons in at least one of the holes. That is, there will be
at least two people with the same numbers of hairs on their heads.

Example 2. You have black and white socks in your drawer. The room is pitch dark.
How many socks do you need to pull from the drawer so that there are two of the
same color? (You don’t care if the pair is white or black.) What if you have black,
white, and red socks in your drawer? What if you have black, white, red, and green
socks in your drawer and you want to get five socks of the same color?

The answer to the first question is three. Out of three socks at least two will be of
the same color. If we picked only two socks they could be of opposite colors. If we have
black, white, and red socks in the drawer, we would need to pick four socks. Finally,
the answer to the last question is 17. We have four pigeonholes (colors of socks) and
17 pigeons, so at least five pigeons would have to end up in the same pigeonhole.
That is, there would be five socks of the same color. If we pick 16 socks, it could be
the case that we picked four socks of each of the four colors.

Example 3. What is the largest number of squares on an 8×8 chessboard which
can be colored green, so that in any three squares that form an L-tromino at least
one square is not colored green. (The L-tromino may be rotated through a multiple
of 90 degrees.)

If we color every other row on the board green, there would be 32 green squares
and in any three squares that form an L-tromino at least one square is not colored
green.

Let’s show that 32 is the largest number of squares which can be colored green, so
that the condition is satisfied. Assume that one can actually place at least 33 green
squares in the required fashion.

Break the board into sixteen 2 by 2 squares. These 16 two by two squares are our
holes. We have more than 33 pigeons (green squares). Hence there will be a two by
two square with at least 3 green squares, which would have to form a green L-tromino.

Hence there are at most 16 · 2 = 32 green squares.
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Example 4. Given 14 integers, show that two of them can be chosen so that their
difference is divisible by 13.

The pigeonholes now are the possible remainders after division by 13. There are 13
such holes, 0 through 12. Hence at least two of the fourteen integers will end up in
the same pigeonhole, that is, will give same remainder after they are divided by 13,
so their difference would be divisible by 13.
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Homework Problems

Problem 1. A four by four table is filed with sixteen numbers, each of which equals
−1, 0, or 1. Show that among the ten possible sums along the rows, columns, and
diagonals at least two are the same.

Problem 2. Given seven integers show that one can pick three of them so that their
sum is divisible by 3.

Problem 3. Given 8 different integers, all between 1 and 15 (1 and 15 are allowed),
show that at least three pairs of them have the same (positive) difference. (The pairs
need not be disjoint as sets. For example, (1,4), (4, 7), and (5,8) would work.)

Problem 4. Show that there exists an integer all of whose digits are ones such that
it is divisible by 2017.

Problem 5. Show that in any group of 10 people, there are at least two who have
an identical number of friends within the group. (If person A is friends with person
B, person B is also friends with person A.)

Problem 6. What is the smallest number of squares on an 8×8 checkerboard which
can be colored green, so that among any three squares that form an L-tromino at
least one square is green?

Problem 7. Each vertex of a cube is marked with either 0 or 1. Each face is then
marked with the sum of the integers written at its vertices. Is it possible that all the
numbers on the faces are distinct? What if each of the vertices is marked with either
1 or −1?

Problem 8. Prove that there exist two different powers of 7 that differ by a multiple
of 2017.

Problem 9. Color all the points with integer coordinates in the plane green. Show
that whichever way you pick five of these green points, there will be two among them
such that the segment connecting these two points has a green midpoint.

Bonus 1. Let a1, . . . , a2017 be positive integers. Show that you can always pick a few
of them so that their sum is divisible by 2017.


