

Homework 11

Pythagorean Theorem: Number Theory and Geometry

Problem 1. Let (a, b, c) be a primitive Pythagorean triple with even b and odd a and c. Describe all such triples that satisfy $c=b+1$. (The goal is to express b and c in terms of a). Use the obtained description to observe that for each odd a there exists a Pythagorean triple of the form $(a, b, b+1)$. Find such a triple for $a=37$.

Problem 2.

(a) Show that the sum of squares of two odd numbers cannot be equal to a square of an integer.
(b) Can the sum of squares of three odd numbers be equal to a square of an integer?

Problem 3.

(a) Show that a positive integer n of the form $n=4 k$ where k is a positive integer can always be written as a difference of squares of two nonnegative integers.
(b) Show that a positive integer n of the form $n=4 k+1$ where k is a nonnegative integer can always be written as a difference of squares of two nonnegative integers.
(c) Show that a positive integer n of the form $n=4 k+3$ where k is a nonnegative integer can always be written as a difference of squares of two nonnegative integers.

Problem 4. Show that positive integers n of the form $n=4 k+2$ where k is a nonnegative integer cannot be written as a difference of squares of two nonnegative integers.

Problem 5. Show that a positive integer n of the form $n=8 k+7$ where k is a nonnegative integer is not representable as a sum of three squares of nonnegative integers

Problem 6.

(a) Let $a \in \mathbb{Z}$. Prove that

$$
a^{2} \equiv 0,1, \text { or } 4 \bmod 8
$$

That is, prove that a square of an integer leaves a remainder of 0,1 , or 4 when divided by 8 .
(b) Let m and n be natural numbers. Are there any perfect squares of the form

$$
3^{m}+3^{n}+1 ?
$$

Hint: Look at $3^{2 k}$ and $3^{2 k+1}$ modulo 8 . What could $3^{m}+3^{n}+1$ be equal to modulo 8 ? In other words, what are the possible remainders after they are are
divided by 8 ? What remainder can you get when you divide $3^{m}+3^{n}+1$ by 8 ? Now use part (a) of the problem.

Problem 7. Consider a triangle with the vertices $A(0,0), B(1,3)$, and $C(2,1)$ as in the diagram below. Show that $A B C$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Let D be the point with the coordinates $(1,0)$. Show that $\tan \angle A B D=1 / 3$ and $\tan \angle C B D=1 / 2$. Explain why this proves the following trig identity:
$\arctan 1 / 3+\arctan 1 / 2=\arctan 1$.

Problem 8. Use a method similar to the one described in the previous problem to show that

$$
\arctan \frac{1}{2}=\arctan \frac{1}{3}+\arctan \frac{1}{7} .
$$

Problem 9. Use the same method again to show that

$$
\arctan 1+\arctan 2+\arctan 3=180^{\circ} .
$$

Problem 10. Consider a right pyramid $A B C D$ with $\angle B A C=\angle C A D=\angle D A B=$ 90°. Show that the sum of squares of the areas of $A B C, A B D$, and $A C D$ is equal to the square of the area of $B C D$.

That is, show that

$$
S_{A B C}^{2}+S_{A B D}^{2}+S_{A C D}^{2}=S_{B C D}^{2} .
$$

Use the fact that the altitudes from vertices A and D to the side $B C$ have a common foot E. Also, since $A D$ is perpendicular to two lines in the base that pass through A, it is perpendicular to every line in the base, in particular $\angle D A E=90^{\circ}$.

