Geometry for HS Teachers
Fall 2011

Dissections

Definition 0.1. Two convex polygons P and Q are said to be congruent by dissection if you can cut P into convex polygons, rearrange the obtained pieces (it's allowed to turn the pieces over), put them together with no overlaps and obtain a polygon congruent to Q.

The goal of this sequence of problems is to prove the Bolyai-Gerwien Theorem that says that any two convex polygons of the same area are congruent by dissection.
Problem 1. Let P and Q be convex polygons. And S be a square. Given that P and S are congruent by dissection, and Q and S are also congruent by dissection. Show that this implies that P and Q are congruent by dissection.

Problem 2. Show that any convex polygon can be cut into triangles.
Problem 3. Cut a triangle into parts that can be rearranged to get a rectangle. (It's okay to turn the parts over.) Explain how this works for a general triangle.

Next, we need to show that any rectangle is congruent by dissection to some square. This is broken into two problems.

Problem 4. Let P be a rectangle. Show that it is congruent by dissection to a rectangle with sides a and b such that $a \leq b<4 a$.
Problem 5. Let P be a rectangle with sides a and b such that $a \leq b<4 a$. Show that it is congruent by dissection to a square.

Plan: Let $A B C D$ be the rectangle and $A E F G$ be the square of the same area (see the diagram). Let $A B=b, A D=a$. Let X be the point of intersection of $D C$ and $F E$. Draw a segment that connects B and G. Let the points of intersection of $B G$ with $D C$ and $F E$ be Y and Z correspondingly.

Then $A E=A G=\sqrt{a b}$ (why?). Show that $G D=Z E$. Explain why this implies that the triangles $G D Y$ and $Z E B$ are congruent. Next, show that the triangles $G F Z$ and $Y C B$ are congruent. Use this information to cut $A B C D$ into convex pieces, rearrange them and get $A E F G$. Find the length of $Y X$ and show that $Y X>0$ if and only if $b<4 a$.

Problem 6. Consider the following shape which is a union of two squares.

Cut this shape into three pieces such that they can be rearranged to get a square. If the first square has side a and the second has side b, what is the side of the new square?

Problem 7. Prove the Bolyai-Gerwien Theorem: Any two convex polygons of the same area are congruent by dissection.

