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1. Introduction to the Four Numbers Game

The Four-Numbers game is a simple yet interesting problem that illustrates the fact that
an elementary game relying only on basic arithmetic can exhibit complexity worthy of ad-
vanced analysis. Although the Four-Numbers game has been examined by many different
people, the earliest record of the game is credited to E. Ducci of Italy in the late nineteenth
century. Hence it is sometimes called a Ducci Sequence. [6] The rules of the Four-Numbers
game are very simple. In fact, the game can be enjoyed by elementary school math students
and college students alike.

The most basic form of the game begins with four nonnegative integers, a, b, c, d and
a square. One number is placed at each corner of the square. The resulting square with
numbers at each vertex is called the “start square”.

Fig 1: The initial configuration of the Four Numbers game.

Consider the start square as ‘step 0’ or S0 of the game S. The first step is then obtained
by creating a new square inside the original square with corners at the midpoints of the sides
of the previous square. Each new corner is labeled with the absolute value of the difference
between the two neighboring labels. This process continues until the difference between the
numbers at each of the vertices is zero. The game is over when all four labels are zeros.

Definition: 1.1 If for some Four Numbers game S = So = (a, b, c, d) and a = b = c = d = 0,
then S is called the zero game. All other games are nonzero.

Fig. 2: (Left): The (6, 9, 0, 5)-game after 1 step.
(Right): The (6, 9, 0, 5)-game ends after 5 steps.
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Definition: 1.2 The length of the game S = S0 = (a, b, c, d) is defined as the number of
steps, n, it takes to end the game. The length is denoted L(a, b, c, d) = L(S0) = n.

For example, the (6, 9, 0, 5)-game has length 5, and the (12, 4, 16, 8)-game has length
3. See Figures 2 and 3.

Fig. 3: The (12, 4, 16, 8)-game has length 3.

Each of the examples we have considered have ended in finitely many steps. Such games
are said to have finite length. If a game does not end in finitely many steps, then it is said
to have infinite length.

An interesting observation is that the length of a game is not necessarily dependent on
the size of the numbers involved. For example the (11, 9, 7, 3)-game has length 7 but the
(17231205, 61305, 5371311, 322)-game only has length 4. At first glance it would be easy to
jump to the conclusion that the second game would be longer due to the larger numbers and
the fact that they are further apart from one another.

The Four Numbers game is complex, and we will need to examine its behavior carefully
to understand the possible long term outcomes of the game. Will will start by considering
the symmetry inherent to the game.

2. Symmetries of a Square

In general, we use the word symmetry when describing objects, regions or patterns that
exhibit similarity in size, shape, color, etc. In art, symmetry describes something that is
visually appealing under certain guidelines. With respect to math, we generally describe a
figure or expression as symmetric if its elements or parts can be interchanged in some logical
way without affecting the overall object.

In order to apply symmetry to the Four Numbers game consider the symmetry of a
square. (This section on the symmetries of a square follows the presentation provided by
Gallian [3]). Imagine a glass square with corners labeled 1, 2, 3, 4. Suppose we pick the glass
square up off of a surface and move it around in some way before placing it back down. We
are not able to change the position of labeled corners, but we can move the square in such
a way that changes the order in which we see the labels. Consider rotation. If we pick up
the square and rotate it 90o in the clockwise direction we have maintained the order of the
labels but their locations have changed. We can rotate the square 90o, 180o, or 270o before
repeating the original positions of the labels, see Figure 4.
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Fig. 4: All of the possible rotations of the square.

We can also consider reflecting the square about the axes of the square. That is, we can
pick up the square and rotate in three-dimensional space, as opposed to the two-dimensional
rotations seen in Figure 4. These three-dimensional rotations about the horizonal, vertical
or one of the two diagonal axes result in the reflection of the labels of the corners. See Figure
5 for a clear visual representation of the reflections of the square.

Fig. 5: All of the possible reflections of the square.

We do not necessarily have to pick up the square and move it in only one way before
setting it back down. We are able to move the square in more one way followed by a move
in another way. In fact, applying two such moves on the square defines a “multiplication”
on the set of symmetries of the square. This multiplication is an important notion in group
theory because the set of symmetries of the square together with the multiplication exhibit
a nice structure known as a dihedral group. The set of the eight symmetries of the square is
known as the dihedral group of order 8, or D8.[3]

The notion of a dihedral group can be generalized to describe the symmetries on any
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regular polygon having n sides. As it turns out, dihedral groups are a staple of group theory
and much can be said about them. However, in this paper we will not need more than what
has already been presented.

To illustrate an interesting and surprising observation consider the (a, b, c, d)-game. Re-
flect it over D2 then rotate it by R180.

Fig. 6: Top: The (a, b, c, d)-game reflected over D2 and rotated by R180.
Bottom:The (a, b, c, d)-game reflected over D1.

Again start with the (a, b, c, d)-game. Rotate it by R90, reflect it over V then over H.

Fig. 7: Top: The (a, b, c, d)-game rotated by R90, reflected over V then over H.
Bottom:The (a, b, c, d)-game rotated by R270.

These examples should motivate the observation that the resulting start square of any
product of the 8 symmetries of D8 can be obtained from any one single rotation or reflection.
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3. Symmetry of the Four Numbers Game

Since The Four Numbers game is defined on a square, we can use the symmetries of
the square described in Section 2 to better understand the Four Numbers game and its
symmetries. To begin, consider the (a, b, c, d)-game and it’s 4 rotations: the (a, b, c, d)-game,
the (d, a, b, c)-game, the (c, d, a, b)-game and the (b, c, d, a)-game. It is not difficult to see
that these 4 games are really the same game. All of the steps of the games are all exactly
the same, just with the labels in rotated positions. Thus it is no surprise that these 4 games
have the same length. More generally, we can apply any of the eight symmetries of D8 to
the (a, b, c, d)-game (see Figure 6) without changing the length of the game.

Fig.8: All of the possible rotations and reflections of the (a, b, c, d)-game under D8.

These observations about the symmetry within the Four Numbers game should motivate
the following definition.

Definition: 3.1 A Four Numbers game is equivalent to the (a, b, c, d)-game if it can be
obtained from the (a, b, c, d)-game through rotations and/or reflections. Therefore all com-
binations in D8 are equivalent.

We know that for any (a, b, c, d)-game, we can rotate or reflect the start square with any
combination of the symmetries of D8 without affecting the length of the game. Thus all
equivalent games have the same length.

Furthermore, we can see that, in all of the symmetries presented in Figure 6, the labels
a and b are next to each other. The same can be said for b and c, c and d, and d and a.

Definition: 3.2 Any of these pairs of labels that are next to each other in a start square,
and thus in all possible rotations or reflections of that start square, are called next neigh-
bors .

It is clear to see that the symmetries of the square preserve next neighbors.
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4. The Four Numbers Game Beyond the Integers

Thus far we have only seen integer-valued Four Numbers games1. Although this sim-
ple form of the game is fun and interesting, the curious reader will question what happens
to the Four Numbers game if non-integer labels are used.

Consider a rational-valued Four Numbers game.

Fig. 9: The (6, 1/2, 3/2, 4)-game has length 5.

The rational-valued Four Numbers game is played with the same rules as the integer-
valued game. In fact, the rational-valued Four Numbers game exhibits many of the same
properties, as we will demonstrate in the next section, as the integer-valued Four Numbers
game.

While the added complexity of rational-valued Four Numbers game may satisfy the afore-
mentioned curious reader, an even more inquisitive reader may question the what happens
to the Four Numbers game if irrational, real-valued labels are used. In moving to the ra-
tionals it will be helpful to introduce a new formulation of the game. We will no longer be
only using squares to illustrate the steps of the Four Numbers game, rather we will work
with quadruples in R4. Letting S0 = (a0, bo, co, do) represent the start square of a game and
Si = (ai, bi, ci, di), the ithstep, we see then that

Si = (|ai−1 − di−1|, |ai−1 − bi−1|, |bi−1 − ci−1|, |ci−1 − di−1|).

Let’s consider the (
√

2, e, π,
√

3)-game.

1In actuality, we only considered nonnegative integer-valued Four Numbers games. However, because the
iteration rule of the Four Numbers game is defined using the absolute value of differences, negative integer
games quickly become positive integer games. Therefore, although negative-valued games are interesting,
they are not worthy of additional analysis.
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S0 = (
√

2, e, π,
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√
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2|)
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√
2| − |

√
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√
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√

3| − |
√

3−
√

2|||,
|||π −

√
3| − |

√
3−

√
2|| − ||

√
3−
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2| − |

√
2− e|||, |||

√
3−

√
2| − |

√
2− e||−

||
√

2− e| − |e− π|||)
S4 = (0, 0, 0, 0)

Surprisingly after only 4 steps the entries of the (
√

2, e, π,
√

3)-game cancel themselves
out! We will continue our discussion of real-valued Four Numbers games in Sections 7 and
8.

5. Four Numbers Games of Finite Length

We claim that every Four Numbers game with nonnegative rational number labels has
finite length. Furthermore, a maximum value for the length of any game S can be calculated
from the values of the labels of S0. In order to prove this fact we will need the following
observations and lemma. (Observations 1 and 2 and Lemma 1 follow from the examples and
proof outlined in Sally[5].)

Observation 5.1: Multiplication of the four nonnegative rational start numbers of a game
by a positive integer m does not change the length of the game.

To illustrate consider the (6, 4, 9, 8)-game and (18, 12, 27, 24)-game. Both have length
5. More generally, if m ∈ Z+ then it is not hard to see that the (a, b, c, d)-game and
the (ma,mb, mc,md)-game have the same length. Consider the entries of the kth step of
the (ma, mb, mc,md)-game. They are equal to m times the entries of the kth step of the
(a, b, c, d)-game. If the (a, b, c, d)-game has length L then all of the entries in step L are equal
to zero. It follows that in step 0 through step L− 1 at least one entry is nonzero. Since m is
a nonnegative integer we know that for some integer n, in order for m · n = 0, n would have
to be equal to zero. Thus if at least one entry in step L− 1 is nonzero then at least one of m
times that entry is still nonzero. Thus the (ma,mb, mc,md)-game does not end in the first
L−1 steps. Since the (a, b, c, d)-game has length L, we know that all of the entries in step L
are equal to zero. Since m · 0 = 0 we know that all the entries of the (ma, mb, mc, md)-game
in step L are also equal to zero. Therefore the (ma,mb, mc,md)-game has length L as well.

Observation 5.2: If a Four Numbers game with nonnegative integer start numbers has
length at least 4, then all the numbers appearing from step 4 onward are even.

To verify observation 2 we must consider all possible cases of different combinations of
even and odd numbers as the labels of a start square. It will be helpful to introduce a new
labeling system. If a label for the start square is an even number, replace it with the letter
‘e’. If the label is an odd number, replace it with an ‘o’. For example, the (6, 9, 4, 7)-game

8



becomes the (e, o, e, o)-game. Since there are two possible labels for each of the four corners of
the square, there are 24 = 16 possible starting configurations using this new labeling system.
However, some of these starting configurations are equivalent games under reflection and
rotation. In particular, we can use rotations and reflections to obtain all 16 possible starting
configurations from the following 6 cases of start games:

(i) = (e, e, e, e) (iv) = (e, o, e, o)
(ii) = (e, e, e, o) (v) = (e, o, o, o)

(iii) = (e, e, o, o) (vi) = (o, o, o, o)

The following rules will be helpful:

e− e = e o− o = e
e− o = o o− e = o

Figures 10-12 below show that for all 6 case start games all of the labels are even in 4 or
fewer steps. Therefore, with use of rotation and reflection, all 16 possible starting configu-
rations will have all even labels in 4 or fewer steps.

Fig 10: (Left): Case (i): All labels are even after zero steps.
(Right): Case (ii): All labels are even after four steps.

Fig 11: (Left): Case (iii): All labels are even after three steps.
(Right): Case (iv): All labels are even after two steps.
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Fig 12: (Left): Case (v): All labels are even after four steps.
(Right): Case (vi): All labels are even after one step.

Hence, Observation 2 holds true.
Observations 1 and 2 are helpful in proving that all integer-valued Four Numbers games

end in infinitely many steps. In fact, we can even provide an upper bound on the length.

Lemma 5.1: Every Four Numbers game played with nonnegative integers has finite length.
In fact, if we let A be the largest of the four nonnegative start integers and if k is the least
integer such that A/2k < 1, then the game has length of most 4k.

Proof: We consider two cases: if the length of the game is at most 4 and the length of the
game is greater than 4.

Case 1: Let A be the largest entry of the start square and assume the length of a game is
at most 4. If A = 0 then all entries must be zero and A < 1 = 20. We have defined k as the
least integer such that A/2k < 1 that is A < 2k, so in this case k = 0. We know the length
of the zero game (the (0, 0, 0, 0)-game) is 0 = 4 · 0. If A > 0 then k cannot equal zero, so
k ≥ 1, and certainly 4 ≤ 4k when k ≥ 1. We have assumed the length of the game is at
most 4 and 4k = 4 if and only if k = 1.

Case 2: Consider a game with length t, where t > 4. We know all entries in steps 4 through
t are even by Observation 2. Let A equal the largest of the four integer entries in step 4.
Because all of the entries are even, we can divide them by 2 without changing the length of
the game by Observation 1. Thus the largest integer in this new game will be A/2. If the
length of the new game is s, then s + 4 = t. If s > 4 then (by applying observation 2 again)
we know that all the entries in steps 4 through s of the new game are even integers. Thus we
can see that if s > 4 then t > 8 and all the entries in steps 8 through t of the original game
are divisible by 4 = 22. We can repeat this process by creating another game by dividing the
entries of the 4th step of the new game by 2. This yields a game with largest integer A/22

and with length q, where q + 8 = t. Hence we can say that the original game has length
greater than or equal to 8, and the integer entries of steps 8 through t can be divided by
22. So if A is the largest integer in step 8 of the original game we know that A/22 ∈ Z+.
So A/22 ≥ 1. If 2 is the largest integer J such that A/2J ≥ 1 then A/2J+1 < 1. So in this
case, J = 2 , J + 1 = 3 and A < 23. That is, k = 3 is the smallest integer satisfying A < 2k.
We note now that the length of the game is at most 12. Indeed, if the length of the original
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game is greater than 12 then the process can be repeated again such that A can be divided
by 23. We have said that J is the largest integer such that A/2J ≥ 1 we know J = 2, so
J 6= 3. Hence the length of the game is not greater than 12. Therefore we have 8 ≤ t ≤ 12.
We have defined k = 3 to be the least integer such that A/2k and 8 ≤ t ≤ 12 = 4 · 3 = 4k.
Therefore the length of the game is at most 4k. �

We are now ready to prove the main result of this section.

Theorem 5.1
Every Four Numbers game played with nonnegative rational numbers has finite length.

In fact, if N is the largest numerator occurring when the four start numbers are written with
a common denominator, then the length is at most 4k, where N < 2k .

Proof:
We know that every rational number can be expressed as some fraction, a/b, where

a, b ∈ Z and b 6= 0. Consider the (e, f, g, h)-game, where e, f, g, h ∈ Q+. We can express
each of these positive rational numbers as a fraction of two positive integers. We can also
manipulate the fractions so that they are expressed with a common denominator, J , where
J ∈ Z+. Let N ∈ Z+ be the largest numerator occurring when the four start numbers are
written with a common denominator J . Then N/J is the largest of the four rational start
numbers. Let the length of the original (e, f, g, h)-game be l. We know from Observation
1 that we can multiply the four start numbers of a game by an integer and not change the
length of the game. So if we multiply each of e, f, g and h by J then the length of the
(Je, Jf, Jg, Jh)-game is still l, and Je, Jf, Jg, Jh ∈ Z+. Also N = max(Je, Jf, Jg, Jh).
From Lemma 1 we know if N is the largest of the four nonnegative integer start numbers
and k is the least integer such that N/2k < 1, then the length of the game is at most 4k, so
l ≤ 4k. �

We can conclude that any Four Numbers game with nonnegative integer or rational start
labels has finite length. Next consider the Four Numbers game with long but finite length.

6. Four Numbers Games of Long but Finite Length

We have shown that all Four Numbers games with nonnegative or rational start labels
have finite length. And we can see from our examples in Figures 2 and 3 that the (6, 9, 0, 5)-
game has length 5 and the (12, 4, 16, 8)-game has length 3; both games have relatively short
length. In fact, the longest game we have discussed is the (11, 9, 7, 3)-game which has length
7. This begs the question: Are there long Four Numbers games, and if yes, how do we
construct them?

In order to explore Four Numbers games of long length we will consider the Tribonacci
games. Following the argument in Sally [5] we define a Tribonacci game as a Four Numbers
game played with four successive terms of the Tribonacci sequence. Where the Tribonacci
sequence is defined recursively much like the Fibonacci sequence. In particular, by definition,
t0 = 0, t1 = 1, t2 = 1 and for all n ≥ 3, tn = tn−1 + tn−2 + tn−3.

The length of a Tribonacci game becomes longer as the labels of the game get further
out in the Tribonacci sequence. We will show that we can compute the exact length of any
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Tribonacci game and that we can produce long games, but first we must familiarize ourselves
with a few new concepts.

First, let us introduce some notation to simplify the upcoming computations. Let Tn be
a the (tn, tn−1, tn−2, tn−3)-Tribonacci game. Then

DTn = (tn − tn−3, tn − tn−1, tn−1 − tn−2, tn−2 − tn−3),

and the kth step of the Tn game is denoted DkTn.

Next, recall the greatest integer function, denoted [r] for any real number r, is the the
greatest integer less than or equal to r [5]. For Example:

[2.6] = 2

[
7

2

]
= 3 [.333333] = 0.

Before we are able to prove the formula for computing the length of a Tribonacci game
we need the following Lemma.

Lemma 6.1: The Four Numbers game that starts with the third step of the Tn-game
has the same length as the Tn−2-game. That is

D3Tn = 2Tn−2
2.

Proof:
Using the operator D we can compute

D3Tn = (tn − tn−1 + tn−2 − tn−3, tn − tn−1 − tn−2 + tn−3,
− tn + 3tn−1 − tn−2 − tn−3, tn − 3tn−1 + 3tn−2 − tn−3)

and using Observation 5.1 we see that 2Tn−2 = (2tn−2, 2tn−3, 2tn−4, 2tn−5). Solving tn−1 =
tn−2+tn−3+tn−4 for tn−4 yields tn−4 = tn−1−tn−2−tn−3 and solving tn−2 = tn−3+tn−4+tn−5 =
tn−3 + (tn−1 − tn−2 − tn−3) + tn−5 for tn−5 yields tn−5 = 2tn−2 − tn−1. Thus using only terms
of tn, tn−1, tn−2,and tn−3 we can see that

2Tn−2 = (2tn−2, 2tn−3, 2tn−1 − 2tn−2 − 2tn−3, 4tn−2 − 2tn−1).

Thus we can manipulate the labels of each of the games too see:

tn − tn−1 − tn−3 = tn−1 + tn−2 + tn−3 − tn−1 − tn−3 + tn−2

= 2tn−2

tn − tn−1 − tn−2 + tn−3 = tn−1 + tn−2 + tn−3 − tn−1 − tn−2 + tn−3

= 2tn−3

2Recall from Observation 5.1 that we can multiply the labels of a Four Numbers game by an integer
without affecting the length of the game. Therefore L(Tn−2) = L(2Tn−2).
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−tn + 3tn−1 − tn−2 − tn−3 = −tn−1 − tn−2 − tn−3 + 3tn−1 − tn−2 − tn−3

= 2tn−1 − 2tn−2 − 2tn−3

tn − 3tn−1 + 3tn−2 − tn−3 = tn−1 + tn−2 + tn−3 − 3tn−1 + 3tn−2 − tn−3

= −2tn−1 − 2tn−2 − 2tn−3

Therefore D3Tn = 2Tn−2. �

Lemma 6.2: For all n ∈ N,

[
n− 2

2

]
+ 1 =

[n

2

]
.

Proof: Assume
n

2
=

[n

2

]
+ ε, since n ∈ N we know that ε = 0 or ε =

1

2
. Then

[n

2
− 1

]
=

[[n

2

]
+ ε− 1

]

=


[n

2

]
− 1 if ε = 0[n

2

]
− 1 if ε =

1

2
.

Therefore [
n− 2

2

]
+ 1 =

[n

2
− 1

]
+ 1

=
[n

2
− 1

]
+ 1

=
[n

2

]
− 1 + 1

=
[n

2

]
.

�

Now we are ready for our next theorem regarding long games.

Theorem 6.1
Given any n ∈ N, the Tribonacci Four Numbers game Tn = (tn, tn−1, tn−2, tn−3) has

length 3
[n

2

]
.

Proof: We proceed by complete induction. For the base Case, n = 3, we know that
t3 = t2 + t1 + t0, where t3 = 2 = 1 + 1 + 0. We can easily compute the length of the
(2, 1, 1, 0)-game:
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Fig. 13: L(T3) = 3.

We see that

[
3

2

]
= 1. Thus L(T3) = 3 = 3·1 = 3

[
3

2

]
. Now assume n ≥ 4 and L(Tk) = 3

[
k

2

]
.

for all k ∈ N such that n ≤ k ≤ n and consider L(Tn). We know from Lemma 6.1 that
D3Tn = 2Tn−2, which to say that L(Tn) = L(Tn−2)+3. Since n ≥ 4 we know that n−2 ≥ 2.

Thus by our base case we know that L(Tn−2) = 3
[n

2

]
. Therefore using Lemma 6.2 we can

see that

L(Tn) = L(Tn−2) + 3 = 3

[
n− 2

2

]
+ 3

= 3

([
n− 2

2

]
+ 1

)

= 3

([
n

2
− 2

2

]
+ 1

)

= 3
([n

2

]
− [1] + 1

)
= 3

([n

2

]
− 1 + 1

)
= 3

[n

2

]
Therefore for all n ∈ N, L(Tn) = 3

[n

2

]
. �

For example, consider t18 = 19, 513. Then T18 = (19513, 10609, 5868, 3136). Then we can
use Theorem 6.1 to see that L(T18) = 27. We can also use this result to produce games of
arbitrarily long length. Let’s construct a Four Numbers game length greater than or equal

to 100. So 100 < L(Tn) = 3
[n

2

]
. Solving for n we see n > 66.66 but [66] = [67] therefore we

must add 1 to our n. Thus L(T68) > 100. In fact L(T68) = 102.
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Thus by considering the Tribonacci game Tn for sufficiently large n we can construct Four
Numbers games of arbitrarily large length.

7. The Four Numbers Game over the Real Numbers

Thus far our examination of the Four Numbers game has been relatively basic. Our
analysis has relied largely on arithmetic and the fact that there is a minimal nonnegative
nonzero integer. Note that there is no minimal nonnegative real number so the Four Num-
bers game with real valued labels is quite different from the rational or integer cases.

In moving to the reals our analysis will become more complex, and we will use some math-
ematical tools from linear algebra. It is natural to think of a real-valued quadruple as a vector
in R4. Thus the iteration rule for the Four Numbers game is the function F : R4 → R4 de-
fined by F (a, b, c, d) = (|a−d|, |a−b|, |b−c|, |c−d|). Can we represent F with a matrix? That
is, is F a linear transformation? Recall that F : R4 → R4 is a linear transformation if for all
vectors ~u,~v ∈ R4 and for any real number r,F (~u+~v) = F (~u)+F (~v) and F (r~u) = r(F (~u)) [2].

Claim: F is not a linear transformation on R4.
We can verify our claim with a counterexample. Let ~u and ~v be quadruples in R4. Let

~u = (6, 0, 3, 1) and ~v = (0, 4, 1, 9), so that ~u + ~v = (6, 4, 4, 10). Then

F (~u + ~v) = (|6− 10|, |6− 4|, |4− 4|, |4− 10|)
= (4, 2, 0, 6),

while

F (~u) + F (~v) = (|6− 1|, |6− 0|, |0− 3|, |3− 1|) + (|0− 9|, |0− 4|, |4− 1|, |1− 9|)
= (5, 6, 3, 2) + (9, 4, 3, 8)
= (14, 10, 6, 10)
6= F (~u + ~v).

Thus F is not a linear transformation on R4.

The reader should not be too disappointed however, because the linearity of our func-
tion is not completely lost. If we restrict the map of F to the vectors in R4 having strictly
decreasing components then we can salvage the linearity. Let S be the set {(a, b, c, d) ∈ R4 :
a > b > c > d}. Then we can define a new function FS such that for all ~s = (a, b, c, d) ∈ S,
FS(~s) = FS(a, b, c, d) = (a− d, a− b, b− c, c− d)

Claim: F : S → R4 is a linear transformation.

Proof: Let ~u,~v ∈ S. So ~u = (g, h, i, j) and ~v = (k, l, m, n) where g > h > i > j and
k > l > m > n. Then we can see that ~u+~v = (g +k, h+ l, i+m, j +n), and we can compute
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FS(~u), FS(~v) and FS(~u + ~v). Then

FS(~u + ~v) = ((g + k)− (j + n), (g + k)− (h + l), (h + l)− (i + m), (i + m)− (j + n))
= (g + k − j − n, g + k − h− l, h + l − i−m, i + m− j − n)
= ((g − j) + (k − n), (g − h) + (k − l), (h− i) + (l −m), (i− j) + (m− n))
= (g − j, g − h, h− i, i− j) + (k − n, k − l, l −m,m− n)
= FS(~u + ~v).

Thus the first condition of linearity is satisfied. To show that the second condition also
holds let ~u ∈ S. So ~u = (g, h, i, j) ∈ R4 such that g > h > i > j. Let r be any real number.
Then we can easily compute FS for these vectors.

FS(r~u) = (rg − rj, rg − rh, rh− ri, ri− rj)
r(FS(~u)) = r(g − j, g − h, h− i, i− j)

= (rg − rj, rg − rh, rh− ri, ri− rj)
= FS(r~u)

�
Thus the second condition is satisfied and FS : S → R4 is a linear transformation,

hence FS can be represented by a matrix. In fact, we see that the linear transformation
FS : S → R4 is represented by the matrix

M =


1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 −1

,

because

FS(~v) = FS


a
b
c
d

 =


1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 −1




a
b
c
d

 =


a− d
a− b
b− c
c− d

.

Since the transition rule of the Four Numbers game is now described as a matrix we can
observe that the Four Numbers game s0 = (a, b, c, d) ∈ S has length n if F n

S (~s0) = Mn(~s0) =
~0. Additionally, a game ~s0 has infinite length if F n

S (~s0) = Mn(~s0) 6= ~0 for all n ∈ N. In the
next section we will use eigenvectors to construct such a game.

8. Four Numbers Games of Infinite Length

Recall that ~s0 ∈ S is an eigenvector of M for the eigenvalue λ therefore FS(~s0) =
λ(~s0) 6= ~0. Applying FS again we conclude that FS(FS(~s0)) = λ2(~s0) 6= ~0. More generally,
F n

S (~s0) = λn(~s0) 6= ~0. Hence no matter how many times FS is applied to ~s0, the zero vector
is unobtainable. Thus ~s0 corresponds to a Four Numbers game of infinite length. It remains
to show that there exists such an eigenvector ~s0.
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The process for finding eigenvectors relies on the characteristic polynomial p(λ) of a
matrix M where p(λ) = det(M − λI4). Recall that FS(~s0) = M(~s0) = λ(~s0) has a nonzero
solution if det(M − λI4) equals zero.
So compute

det(M − λI4) = det


1− λ 0 0 −1

1 −1− λ 0 0
0 1 −1− λ 0
0 0 1 −1− λ


= 2λ + 2λ3 + λ4.

Thus p(λ) = λ(λ3 + 2λ2 − 2). Setting p(λ) = 0 we can see that λ = 0 is a root. Using
Maple to find the other roots we see that one of the roots is real

λ0 =
1

3(19 + 3
√

(33))1/3
+

4

3(19 + 3
√

(33))1/3
− 2

3

= 0.8392867553,

and the other two roots are complex

λ1 =
−1

6(19 + 3
√

(33))1/3
− 2

(3(19 + 3
√

(33))1/3
− 2

3
+

1

2i
√

(3)((1/3)(19 + 3
√

(33))1/3

− 4

3(19 + 3
√

(33))1/3

= −1.419643378 + .6062907300i

λ2 =
−1

6(19 + 3
√

(33))1/3
− 2

(3(19 + 3
√

(33))1/3
− 2

3
− 1

2i
√

(3)((1/3)(19 + 3
√

(33))1/3

− 4

3(19 + 3
√

(33))1/3

= −1.419643378− .6062907300i.

Then if ~s0 = (a0, b0, c0, d0) is the eigenvector associated with the real eigenvalue λ0, then
1− λ0 0 0 −1

1 −1− λ0 0 0
0 1 −1− λ0 0
0 0 1 −1− λ0




a0

b0

c0

d0

 =


0
0
0
0

 .

Multiplying then yields 
a0(1− λ0)− d0

b0(−1− λ0) + a0

c0(−1− λ0) + b0

d0(−1− λ0) + c0

=


0
0
0
0

 .
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Therefore

(1− λ0)a0 = d0

(1 + λ0)b0 = a0

(1 + λ0)c0 = b0

(1 + λ0)d0 = c0.

Letting d0 = 1 we can solve the equations for a0, b0 and c0 simultaneously resulting in

~s0 = ((1 + λ0)
3, (1 + λ0)

2, (1 + λ0), 1).

Noting that 0 < λ0 < 1 we know (1 + λ0)
3 > (1 + λ0)

2 > (1 + λ0) > 1. Thus ~s0 is indeed
in S, thus the linear transformation FS holds for ~s0.

This series of computations (which follow the argument in Sally [5]) shows that the ma-
trix M has an eigenvector ~s0 and therefore there exists a real-valued Four Numbers game
of infinite length. In fact, as the next theorem states, there exists an infinite set of Four
Numbers games with infinite length.

Theorem 8.1

There exists infinitely many Four Numbers games of infinite length.

Proof: We have shown that the Four Numbers game with entries (a0, b0, c0, d0) = ~s0,
where ~s0 is the eigenvector corresponding to the eigenvalue λ0, has infinite length. Let
r ∈ R+ such that r > 0. Consider the vector ~r ∈ R4 where ~r = (r, r, r, r). Then
~s0 + ~r = (a0 + r, b0 + r, c0 + r, d0 + r).

We can apply our function FS : S → R4 because we know that ~s0 ∈ S. So a0 > b0 >
c0 > d0. Since r > 0 then a0 + r > b0 + r > c0 + r > d0 + r. Compute:

FS(~s0 + ~r) = ((a0 + r)− (d0 + r), (a0 + r)− (b0 + r), (b0 + r)− (c0 + r), (c0 + r)− (d0 + r))
= (a0 + r − d0 − r, a0 + r − b0 − r, b0 + r − c0 − r, c0 + r − d0 − r)
= (a0 − d0, a0 − b0, b0 − c0, c0 − d0)
= FS(~s0)

We know that FS(~s0) 6= ~0 and F n
S (~s0) 6= ~0 and we know there exists an eigenvalue λ0

that corresponds to ~s0 having infinite length. Thus for all r > 0, ~s0 +~r represents a different
Four Numbers game with infinite length.

We know from Observation 1 that for all m ∈ Z+, L(ma,mb, mc,md) = L(a, b, c, d). A
parallel argument will show that L(ka, kb, kc, kd) = L(a, b, c, d) for all k ∈ R. Hence ~s0 and
k~s0 + ~r will have the same length for all k, r ∈ R+. �

Now we know that not only does there exist an infinitely long Four Numbers game
over there reals, but there are infinitely many of them! Thus we have shown that there are
games of finite bounded length, long but finite length and infinite length.
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9. The Three-Numbers Game? Five? Six?

While the Four Numbers game is very interesting, the question of the possibility of a
Three Numbers game arises. Consider the (1, 1, 2)-game:

Fig. 14: The (1, 1, 2)-game and the first 6 steps written out.

As it turns out, this Three Numbers game does not have finite length. In fact, all Three
Numbers games have infinite length unless the three start numbers are equal. A Three
Numbers game that does not have three equal start numbers will begin to oscillate between
1,1, and 0, after a certain amount of steps. This will obviously never end in a (0, 0, 0) step.
Thus there are three possible lengths for any Three Numbers game, 0, 1, or ∞.

The Five Numbers game follows a similar pattern. Unless all five entries are the same,
the Five Numbers game will have infinite length.

Fig. 15: The first 7 steps of the (1, 8, 4, 3, 6)-game and the first 10 steps written out.
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One can experiment and conclude that the Six and Seven Numbers games do not end
in finite length either, unless all of the entries are equal. Does such behavior continue for
all K-Numbers games with K > 7? Let’s examine the Eight Numbers game. In particular
consider the (4, 12, 6, 3, 0, 9, 1, 2)-game.

S0 = (4, 12, 6, 3, 0, 9, 1, 2)
S1 = (8, 6, 3, 3, 9, 8, 1, 2)
S2 = (2, 3, 0, 6, 1, 7, 1, 7)
S3 = (1, 3, 6, 5, 6, 6, 6, 5)
S4 = (2, 3, 1, 1, 0, 0, 1, 4)
S5 = (1, 2, 0, 1, 0, 1, 3, 2)
S6 = (1, 2, 1, 1, 1, 2, 1, 1)
S7 = (1, 1, 0, 0, 1, 1, 0, 0)
S8 = (0, 1, 0, 1, 0, 1, 0, 1)
S9 = (1, 1, 1, 1, 1, 1, 1, 1)

S10 = (0, 0, 0, 0, 0, 0, 0, 0)

Further experimentation will lead to more finite games. Observe that both 4 and 8 are
powers of 2. In fact, it is this property of 4 and 8 that ensures the finitude of the Four and
Eight Numbers games. We state without proof a theorem from Sally [5]3.

Theorem 9.1
Let k be an integer greater than 2. Every k-Numbers game has finite length if and only

if k is a positive power of 2.

10. Conclusion
We have shown through our analysis of the Four Numbers game that games exist of

finite length, arbitrarily long length and infinite length. Our observations and lemmas have
yielded some very interesting characteristics of the Four Numbers game. In fact, there is
even more to the the Four Numbers game then discussed in this paper. With further analysis
we can involve statistics to determine the probability that a Four Numbers game will end
in k-steps[5]. We can also, with additional research, illustrate the connection between the
Four Numbers game and Pascal’s triangle[3]. Over all we have exhibited through detailed
examination with advanced mathematics and linear algebra that the Four Numbers game
is much more than a simple game of differences, it is interesting and worthy of meticulous
analysis.

3Proof of this involves the polynomial ring Z2 and is beyond the scope of this paper. Sally, Judith D., and
Paul J. Sally. “The Four Numbers Problem.” Roots to Research: A Vertical Development of Mathematical
Problems.
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