THE DYNAMICAL MOTION OF THE ZEROS OF THE PARTIAL SUMS OF e^z , AND ITS RELATIONSHIP TO DISCREPANCY THEORY*

RICHARD S. VARGA[†], AMOS J. CARPENTER[‡], AND BRYAN W. LEWIS[§]

Dedicated to Edward B. Saff on his 64th birthday, January 2, 2008.

Abstract. With $s_n(z) := \sum_{k=0}^n z^k/k!$ denoting the n-th partial sum of e^z , let its zeros be denoted by $\{z_{k,n}\}_{k=1}^n$ for any positive integer n. If θ_1 and θ_2 are any angles with $0 < \theta_1 < \theta_2 < 2\pi$, let Z_{θ_1,θ_2} be the associated sector, in the z-plane, defined by

$$Z_{\theta_1,\theta_2} := \{ z \in \mathbb{C} : \theta_1 \le \arg z \le \theta_2 \}$$
.

If $\# (\{z_{k,n}\}_{k=1}^n \cap Z_{\theta_1,\theta_2})$ represents the number of zeros of $s_n(x)$ in the sector Z_{θ_1,θ_2} , then Szegő showed in 1924 that

$$\lim_{n\to\infty}\frac{\#\left(\{z_{k,n}\}_{k=1}^n\bigcap Z_{\theta_1,\theta_2}\right)}{n}=\frac{\phi_2-\phi_1}{2\pi},$$

where ϕ_1 and ϕ_2 are defined in the text. The associated discrepancy function is defined by

$$\mathrm{disc}_n(\theta_1,\theta_2) := \#\left(\{z_{k,n}\}_{k=1}^n \bigcap Z_{\theta_1,\theta_2}\right) - n\left(\frac{\phi_2 - \phi_1}{2\pi}\right).$$

One of our new results shows, for any θ_1 with $0 < \theta_1 < \pi$, that

$$\operatorname{disc}_n(\theta_1, 2\pi - \theta_1) \sim K \log n$$
, as $n \to \infty$,

where K is a positive constant, depending only on θ_1 . Also new in this paper is a study of the cyclical nature of $\operatorname{disc}_n(\theta_1,\theta_2)$, as a function of n, when $0 < \theta_1 < \pi$ and $\theta_2 = 2\pi - \theta_1$. An upper bound for the approximate cycle length, in this case, is determined in terms of ϕ_1 . All this can be viewed in our *Interactive Supplement*, which shows the dynamical motion of the (normalized) zeros of the partial sums of e^x and their associated discrepancies.

Key words. partial sums of e^z , Szegő curve, discrepancy function

AMS subject classifications, 30C 15, 30E15