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ABSTRACT. For any © with 0 < 8 < 1, it is known that, for the set of all
n

incomplete polynomials of type 8, i.e., px) = Z}akxk: s = 8-n}, to have
k=s

the Weierstrass property on [ae, 1], it is necessary that

92 < ae < 1.

In this paper, we show that the above inequalities are essentially sufficient

as well.
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1. INTRODUCTION.

At the Conference on Rational Approximation with Emphasis on Appli-

cations of Padé Approximants, held December 15-17, 1976 in Tampa, Florida,

professor G. G. Lorentz introduced new results and open questions for
incomplete polynomials, defined as follows. Let & be any given real

number with 0 < 8 < 1. Then, a real or complex polynomial of the form

Uk
c.kX .

DM

p(x) =
k

s

is said to be an incomplete polynomial of type 8 if s = 8-n. Note that the

set of all incomplete polynomials of type © contains polynomials of arbitrary
degree, and that when 8 > 0, this collection is not closed under ordinary
addition. This set, however, is closed under ordinary multiplication.

For such incomplete polynomials, we have, combining recent results,

THEOREM 1.1. (Lorentz [2], and Saff-Varga [4]). For any fixed © with

0<g=1, let {pn (x)}i:1 be a sequence of incomplete polynomials of
i

respective types Bi, where lim inf ei > > 0. If
-
|p (x)| <M for all x € [0,1], all i=1 and lim deg p = , (1.1)
e ime i
then
P x) - 0, uniformly on every closed subinterval of [0,62). (1.2)
:

Furthermore, (1.2) is best possible in the sense that, for each 8§ with

0 < g =<1, there is a sequence {ﬁn,(x)}izl of incomplete polynomials of

type § satisfying (1.1) and a sequznce {gi}izl with %ii;gi = 92 for which

lﬁn'(ii)] =M for all 1 = 1. Hence, the interval [Oigé} of convergence to
1

zero in (1.2) cannot be replaced by any larger interval [0, 82-+€) for €>0.
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For generalizations of Theorem 1.1, see (4] and [51.

Tn Lorentz [2], the set of all incomplete polynomials of fixed type

6 (0 <@ <1) is said to have the Weierstrass property on [ae,l] if, for
every continuous function £ defined on [ae,lj, there exists a sequence

{p

which converges uniformly to £ on [ae,lj. Evidently, from (1.2), a necessary

[==]
n (X)}i=l’ with p, an incomplete polynomial of type 8 for all i =1,
i

condition that the set of all incomplete polynomials of a fixed type 8,

0 < g <1, has the Weierstrass property on [ae,lj is that

ez = ag <1. (1.3)

The main purpose of this paper is to show that the condition (1.3) is
essentially sufficient as well. The outline of the paper is as follows.
In §2, we state our new result; and comment on their sharpness and their
relation to known results in the literature. The proofs of these new

results are then given in 83.

2. STATEMENTS OF NEW RESULTS.

As our first result, we have

THEOREM 2.1. For any fixed 6 with 0 <8 < 1, let F be any continuous
function on [0, 1] which is not an incomplete polynomial of type 8. Then,
a necessary and sufficient condition that F be the uniform limit on [0, 1]

of a sequence of incomplete polynomials of type 8, is that
2
F(x) = 0 for a1l1 0 S x =9 . 2.1)

As an application of Theorem 2.1, fix any § with 0 <8 < 1 and consider
any continuous function %yon [0, 1] with ”%HL [0,1] = 1 and with ¥ vanishing
>2) 3

on [0, 623 and on [92~+€, 1], where 0 <e <1 - ez. For m > 0, there
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exists, using Theorem 2.1, an incomplete polynomial ﬁn of type 8 with
Hﬁ - %“ r 7 <1, which implies, for m sufficiently small, that p_ assumes

Fel LwLO,i_g ' I
. . - 2 i
its maximum absolute value on [O, 1] in the interval [g R BL + €. Thus,

~ o . jq’ @ s . .
the sequence {<pn(X}/”anLmEO,1]) Ji=1 éf incomplete polynomials, each of
- 2

type 8, cannot tend uniformly te zero in iez, 8° + €] for any € with
0<e <1 -9‘. This observation then gives a different proof of the sharpness
portion (cf. [4]) of Theorem 1.1. We also remark that the sufficiency of
Theorem 2.1 improves a related result of Roulier [3, Theorem 4] concerning

Bernstein polynomials.

From Theorem 2.1, the following is deduced.

THEOREM 2.2. TFor any 6 with 0 < 8§ <1, let {91}121 be any sequence of
real numbers such that 0 < 91 <8 for all i 2 1. Then, for any continuous
function f on [62,1], there exists a sequence {Pn.(x)}izl’ with each Pn_ an
incomplete polynomial of type ei’ such that * .

Pn (x) » £(x), uniformly on [92,1], 2.2)
i
and such that the sequence {Pn,(x)}izl is uniformly bounded on [0,1].

In the case of major inte;est in Theorem 2.2, i.e., when‘ei - B as
i -» @, we remark that the result of Theorem 2.2 is best possible in the
following sense. If [a,b]D> [62, 1] with [a,b] # [62, 1], then there are,
continuous functions on [a,b] which cannot be uniformly approximated on
[a,b] by a sequence {Pn.<x)}i:1’ with each‘Pn- an incomplete polynomial
of type ei’ where Qi - ; ag i - @, :

As other consequences of Theorems 2.1 and 2.2, we have

COROLLARY 2.3. For any 6 with 0 < 8 < 1, consider any continuousg

function f on {Bz,l]. Then, for any q with 1 < g < ®, there exists a
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.
sequence {?v {X>}€:1, with each Pn an incomplete polynomial of type &,
i T - i
such that

I . q,.11/9
Hf-Pn‘[‘!L 592 17 {f ]f(t)-Pn (£)]>de} -0 as i=-®, 2.3
i g f > i

8

and such that the sequence {Pn (x)?izl is uniformly bounded on [0, 1].

COROLLARY 2.4. For any & with 0 < @ < 1, the set of incomplete polynomials
of type 8 is dense in the Banach space quez,lj (with respect to the norm

“'“L [g2,17]) for each qwith 1 =gq <.
q 3

COROLIARY 2.5. For any 8 with 0 < 8 < 1, the set of incomplete
polynomials of type § is dense in the space of continuous functions on

[92 + €, 1] (with respect to the norm ”‘H 1]) for every

Lm[92+ €,
0<e<1- 62.

The sharpness remarks following Theorem 2.2 similarly apply to the
results of Corollaries 2.3-2.5.

To conclude this section, we remark that Corollary 2.5 leaves as an
open question whether or not each continuous function f on [82,13 with

f(82) # 0 is the uniform limit of incomplete polynomials of type §. 1In

BN st

attempting to settle this question, consider the special case of § =

it}

and f(x) 1 on [%, 1]. Setting

(v
i

inf{ﬂl - xmgm(x)HL [%} 1] & is a polynomial of degree m},

a modified Remez algorithm was used to produce the following partial
numerical results, rounded to three decimal, where o denotes the least

. . 1
alternation point in Ef, 1] for each m=> 1.
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m €m am m €m Qm
1 .220 .625 7 .304 .353
2 .261 N 8 .307 344
3 .279 .435 9 .309 .336
4 .289 402 10 311 .330
5 .296 .380 11 .313 .326
6 .300 .365 12 314 .321

13 .316 317

It is interesting to note that the em‘s are, in this partial listing,

monotone increasing with m.

3. PROOFS.
PROOF OF THEOREM 2.1. Let F be any continuous function [0,1] which is
not an incomplete polynomial of type 8, and assume that F is the uniform
1limit of a sequence of incomplete polynomials of type 8. Then, (2.1)
follows from (1.2) of Theorem 1.1, establishing the necessity of (2.1).
For sufficiency, let n, be any positive integer with ng = (1-—8)-1.
1f ﬁyﬂ denotes the integer part of the real number y, let
nil k
S (x):= i x , Yn=n., 3.1)
n k=ﬁne]] ak 0
be the (unique) least squares approximation to the constant function 1
on [0, 1], i.e.,
' L
1 2 1 n-1 k.2 2
0, f (1—Sn(t)) dt = inf j‘ 1- > akt Yoder ay is real
o 0  k=[nel

L
2

Next, set

® ol ak k+1
Q. (x):= s (t) de = 2 ———== % , ¥n=n,- 3.2)
n JO n k=ﬁneﬂ (k+1) 0
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Note that Qn, which is of degree at most n, is an incomplete polynomial

type 8 for all n = ngs since ([n8] + 1) = 8.n.

From the Muntz theory of best Lz-approximation on [€,1], it is known

(cf. Cheney [1, p. 196]) that

n-[nel g,
- I i SN
o, 2 (1*—qj/’

where

qj=ﬂneﬂ+j-l, 3=1,2, "*-, n - [n8].

413

(3.3)

Since the q,'s are consecutive integers, the product in (3.3) telescopes to

la6]/n, whence
1

1 2
- 240" = [nol | -
o, = j; (1'Sn(t)) dep == 8 , as n .

[==]
We now show that the sequence {Qn(x)}n=n converges uniformly to the
0

function x - 82 on the interval [82,13. For this purpose, let € be an

arbitrary real number satisfying 0 <¢ < 62. From (3.2), we have

- N x
x - e? -Q (x) = -€ - Qn(e2 - €) + 2‘f (1-s_(t))de,
8°-¢

so that

92-€

1
gx—eZ-Qn(x)} <e + '!.0 1sn(t)\dt + f 11-Sn<t)§dt, ¥x € [92,1].

g -€

Applying the Cauchy-Schwarz inequality to the last integral, then
2 .
g -¢ 1

= 1
2 , . N o2
|x-8 -Qn(?i)HLwEGZ’l]SE:—r f [s (e)]de+ (1+€-87) z‘f (1-s )de

0 8% -¢

(3.4)

B | et

> i . = - - -
for all n = ny- Clearly, since o, Hl SnHL2[0,1} 8§ as n —» o from (3.4),

(3.5}
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it follows that there is a constant M such that

Is i < > .
HSHHLZEO,lj =M s Vo = nO

Next, note that each Sr (x) from (3.1) is an incomplete polynomial of
type In8l/ (n-1), and [nel/(m-1) - & as n - . Hence, using the more

general L2~version of Theorem 1.1 (cf. Saff and Varga [4, Thm. 2.2 and

the discussion of (2.4')]) gives that
. 2 - .
Sn(x) ~ 0 uniformly on [0,8°-€], as n = =. (3.6)

Furthermore, on writing

2
1 ) 1 ) 8" -¢€ )
25 (1—sn(t)) dt = fo (1-Sn(t)) dt - jo(l -sn(t)} ar
8" -¢
and applying (3.4) and (3.6), we obtain
| 1 2 2 2

1im j (1-—Sn(t)) dt = 8 - {(87-¢e)=¢€. 3.7
i @ e2 _e

Consequently, from (3.5)-(3.7).

lim sup Hx—ez—Qn(x)HLm{e.?,l] <e + 0+ (I+e- 92) A\,/E»,

n—®©

Bt

and as € was arbitrary, then

lim Hx-ez—Qn(x)H

e

fe?,11 " % (3.8)

We next show that Qn(x} - 0 uniformly on [0,82]. For any x with

0<x< 92, it follows from the definition of Qn in (3.2) and the

Cauchy-Schwarz inequality that
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2
e

P ~8

Q) = H s, (t)de| sj js ()jde = j s _(e)|de
o] 0
2, |k :
<o ¢f s, (e’ , vx € [0,67]
O 3
J
whence
o2, ¢ )
d!Q Iil‘m[o 8 7) j‘c Sn(t}cf \3 9}
But
n@ 6 e e
z - 2 . Tar = | 2. .2 r
‘JO Sn(t;)c?tt—fG --Sn(t)} -1+25n(t)_,dc—JO (I—Sn(t)) dt=-8"+ 2 JG Sn(t)at,

2
and as the last integral is just ZQH(G“) from (3.2), then
o , t 2 2 2
f s (t)dts‘f (1-5 )%dt - 87 + 2Q (8. (3.10)
g & 0 n n

1
Since f (l—Sn(t))zdt - 62 - 0 as n =« from (3.4) and since Qn(sz} - 0

as n - from (3.8), it follows from (3.9) and (3.10) that
Ql
- i 1%3[-0"&

Thus, on defining the continuous function L on [0,1] by

we see from (3.8) and (3.11) that

lim HL(x) - Q (0] 0,11 " (3.12)

n=®

To exﬁend‘(3.12), we next assert that any continuous fumction G(x)

on [0,1] with
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0, OSXSGZ,

G(x):= (3.13)
P(x), 82 < x < 1, where P is any polynomial

with P(GZ) =0,

can be uniformly approximated on [0,1] by incomplete polynomials of type €.
Because P(GZ) = 0, we can write
m
P(x) = 5 bkxk(x - 8%y, (3.14)
k=0

Setting

2
€= llx - 8% = %(X)HLODEGZ:U ¥n = ng,
it follows that
K 2
% (x-8 -Qn(x))HLm[ez,HSen , k=0,1,2, «*+, ¥n= n,. (3.15)

: 0< k< m}. Since the case B = 0 of our assertion

Next, set B:= max{ }bk} :

is trivial, assume B > O and let § be an arbitrary positive number. Since
€, 0 as n —» @ from (3.8), there exists a positive integer N = o such

that

P — ¥n > N. (3.16)

n = (m+l)B

Then, for the polynomial P(x) of (3.14), we have from (3.15) and (3.16) that

m K . m K 2 h
120 = 2 byx Qi 0l 12,177l 20 (0D -0y 0, 2,0
? (3.17)
m m 5
s Eﬁo\bk\gn—m-xggo‘bk‘{(m+1)3}$6'

b

St
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B m
k N
Next, we claim that R(x):= & bkx Q k(x) is an incomplete polynomial of
k=0 =
type 8. Indeed, its degree is at most N + m, and as QN+m—k(x) is an
incomplete polynomial of type g, then each product XkQN+m-k(x) in this sum
has a zero at x = 0 of order at least k + (N4m-k)8. But as
k + (N+m-k)g = (N+4m)8 + k(1l-8) = (N+4m)B, then R(x) is an incomplete
polynomial of type 6. Thus, as & > 0 was arbitrary, it follows from (3.17)
that any polynomial P(x) with P(ez) = 0 can be uniformly approximated on

[92,1} by a sequence of incomplete polynomials of type 8. Next, as it is

evident from (3.11) that

2 k
lim || & b x Q 0,

)] 2, =
Nom k=0 wim-k Ol T0,6%]
then G(x) of (3.13) can be uniformly approximated on [0,1] by a sequence

of incomplete polynomials of type 8.
Now, for an arbitrary function F(x), continuous on [0,1] with
F(x) = 0 on [0, 62], let un(x) be the polynomial of degree n of best
. 2 )
uniform approximation to ¥ on [e7, 1]. 1f En' “F—uﬂkafez, 1]’ then

E - 0 as n - @, Clearly, }un(ez)l = ‘un(ez) - F(Gz)} < E_, whence
G - (u G - un(ez))“L [o2, 1] < 2E, Vnz0. (3.18)

Since (un(x) - un(ez)) is a polynomial vanishing at 92, call Un(x) its
continuous extension to [0, 1] with Un(x) =0 on [0, 62] for all n> 0,

Thus, from (3.18),
- N 3‘1

The previous discussion shows that there is an incomplete polynomial Pn

of type 8, for every n > 0, such that

”Un - PnHLco[O,lj = ;};'s
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whence, with (3.19),

Ie -2

At ro , ¥n > O. (3.20)
oo

]SZEH+H
Since En - 0 as n -~ =, this proves (cf. (2.1)) that F(x) can be uniformly

- . @ N . .
approximated on [ 0,1] by {Pn<x)3n=0’ where each Pn(x} is an incomplete

polynomial of type 8. EZ

PROOF OF THEOREM 2.2. Consider any continuous function £(x) on [92,1].
s ‘,m 03 3 03 k]
Since 18, h=p 18 any sequence of real numbers with 0 < en < g for all

n > 0, extend f continuously for each n to [0,1], by means of

£(x), x € [Bﬁ,lj,

2

£ 0= {f@D 0/ 070,  xe el 871,

S 2
0, x € LO,Gn].

Note that Hf&i =}§ﬁ§£ez’1] for all n2 0, and that each f satisfies

L [0,1] .
the hypotheses ©vf Theorem 2.1 with g = en. Applying Theorem 2.1, for any
ow
sequence {n } o withn_ > 0 for all n= 0 and lim n_ = 0, there is an
n’n=0 n o T
incomplete polynomial pn(x) of type Gn such that

I £ ¥n> 0, (3.21)

- p | <
n pnALm[O,lj ="
which implies that
- | - > 0.
”f anLm[ez,lj = ;!fn anLcn[o’lj = N o= 0
Consequently, (2.2) holds. It also follows from (3.21) that

“PnHLw[p,lj <l&ly o3 * s 4L re2,07 n, ¥n> 0,

so that {pn};:O are uniformly bounded on [0,1],
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To prove the sharpness of Theorem 2.2, let _a,b] ::[92,1] with
[a,b] # [82,1], take f(x) = 1, and suppose there exists a sequence
{Pn.(x}}£21 of incomplete polynomials of respective types ei’ where Bi -~ 8,
suc; that Pn~(x) -~ f(x) uniformly on [a,b]. Clearly, {3.311’{}«:)}?;@5i is
uni formly bo:nded on [a,b]. If0<acx 325 then from 155;Prop, 17, this
sequence is necessarily uniformly bounded on [0,1] since g, — 6. But then,
by Theorem 1.1, Pn’(a) - 0 # f(a). Similarly, if b> 1, we deduce by

i, 2
rescaling that Pp ©7) - 0 # £e7). Ei
1 .

- @ o %
PROOF OF COROLLARY 2.3. TFor any sequence {nnjnzo with n_ > 0 for all
n= 0 and lim un = 0, and for any fixed q with 1 < ¢ < =, choose Sr > 0
T :

with 8% +6_ <1 such that 2|f] .~ 2 619 < 1 /2, for every n= 0. Then
n= L[s%1] "n Np/ = yor= . R

define f on [Ov, 1] by means of

£,  x€ [o¥4 1],
2 2 a2 A2
fn(x):= £(8 'f’én)'(x"e )/51‘1 s x € 187,8 ‘f‘én],

0, xe€l0,8%,

so that fn is continuous on [0,1] and satisfies the hypotheses of

Theorem 2.1. Note, moreover, that || fn”L [0,1] < ﬁfﬂL {82 17+ Now,
st Vs - LR}

62-!6 1/q

n

nf_f ‘f(t)-fn(t)qut = gnﬂggx[gz,ljnéi/q < nn/z'

r
rJ'Lq[GZ,l]— J
e2
Applying Theorem 2.1 to fn’ there is an incomplete polynomial P of type
‘ - . . .
8 such that ‘1fn PnHLw[O,l] < nn/2, which also implies that

I £a - Prﬁquez,lj ]
proving (2.3}. Moreover, since HPn”L [0’115}] fn-?nQL [0,17 -?-an';%L r0,1] <

) . . - o .
nn/z +| ﬁiLm[ez,lj’ it is clear that the sequence {Pn(x)}n#) is uniformly

bounded on [0,1]. i

419

< nn/2. Thus, by the triangle inequality, ||f - PuglL [62,11<ﬂn’
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PROOF OF COROLLARY 2.4. As an abvious consequence of the fact that the
. . 2
continuous functions are dense in Lq[& ,1] for any q= 1, Corollary 2.4

then follows directly from Theorem 2.1 and Corollary 2.3. Ei

PROOF OF COROLLARY 2.5, With Gi:= 8 for all i = 1, simply apply Theorem 2.7

to any continuous function on [82 +e,1], where 0 <e < 1 ~ 92. Ei

ACKNOWLEDGMENT
We wish to thank Mr. M. Lachance (University of South Florida) for

having made the calculations which produced the numbers in the tables.

REFERENCES

1. Cheney, E. W. Introduction to Approximation Theory, McGraw-Hill, New York,
1966.

2. Lorentz, G. G. Approximation by incomplete polynomials (problems and
results), Padé and Rational Approximations: Theory and Applications
(E. B. Saff and R. S, Varga, eds.), pp. 289-302, Academic Press, Inc.,
New York, 1977.

3. Roulier, J. A. Permissible bounds on the coefficients of approximating
polynomials, J. Approximation Theory 3(1970), 117-122,

4, Saff, E. B. and R. S. Varga The sharpness of Lorentz's theorem on
incomplete polynomials, Trans. Amer, Math, Soc. (to appear).

5. Saff, E. B, and R. 5, Varga On incomplete polynomials, Proceedings of the
Oberwolfach Conference, Numerische Methoden der Approximationentheorie,
(L. Collatz, G. Meinardus, and H. Werner, eds.), held November 14-19,
1977 (to appear).



