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§ 1. Introduction

In [11, prob. 8.2] Halasz posed the following problem concerning polynomials
having a prescribed zero at z=1: For each n=1, find

J,s=sup {“‘fm:fenm f(l):O}, (1.1)

max; |/ (z)l

where , denotes the collection of all complex polynomials of degree at most n.
As stated by Halasz, the solution to (1.1) has application to certain inequalities
of Turan for lacunary polynomials. Bounds for 2, were obtained by Halasz [4],

by Rahman and Stenger [14], and by Rahman and Schmeisser [12, 13], the

latter authors establishing that

2
l-n—Sl <1_1.03369
8 n

=, +0(1/n?), n=x=1. (L.2)
Blatt [1] in a different connection raised the following problem: For each
n=1, find

E

tyr=min{|lpl,,_: p(1)=0, p(z)=2"+...emn,}, (1.3)

where |[pll,,_;:=sup{|p(z)|: |z| =1}. Because pem, and its reciprocal polynomial
(cf. (2.9)) p* satisly Ple = [p*|.= 1, the problems of Halasz and Blatt are
equivalent in the sense that

Ap=1/u,, n=1. i (1.4)
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The purpose of the present paper is to study the following more general
problem: For each pair of nonnegative integers s, m, find

min (2 — 1° 4@l 1 dn(2)=2"F - Mk (1.5)

As a consequence of our results, we solve exactly the problems of Halasz and
Blatt by proving that

o n+1
A= =1 .
" [cos Z(n—l—l)] , nxl (1.6)

In addition, we determine growth estimates for polynomials having prescribed
order zeros at z= 1, and these estimates are shown, in a limiting sense, to be best
possible.

§2. Notation and Equivalence Theorems

As stated earlier, 7, shall denote the collection of all complex polynomials of

degree at most n. We let n¢ be the subset of m, consisting of complex

polynomials of degree at most n all of whose zeros lie on the circle C:lzi=1
Polynomials in ¢ shall be referred to as C-polynomials. For each pair s, m of
nonnegative integers, we further put

T = {(z—1Y q,,(2): €M) S Tgiom (2.1)

Finally, for any continuous function g defined on a compact set B of the plane,
we set

gl 5 =max{|g(z)|: z€B}. 2.2)

We now state three different but related problems for constrained poly-
nomials.

Problem L For any nonnegative integers s, m, determine

es’mz——-min{]ipﬁcz p(z)=(z—=114,,(2), g (z)=2"+ L ET)s 2.3)

where C: |z|=1.
The analogous problem for C-polynomials is stated as

Problem II. For any nonnegative integers s, m, determine
E, ,-=min{|Ple: P(2)=(z= 1) Q(2), Qul?) ="+ €T} (2.4)
The third extremal problem concerns constrained polynomials on the real
interval [ —1,17.

Problem IIL. For any nonnegative real numbers o, f, and any nonnegative
integer m, determine

(o, B, my:=min {| Tl 1 T(x)=(1—-x)"(1 +x)f 1, (x), rm(x)=x"‘+...€nm}.
(2.5)
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The solution to Prob.1 is known to be unique (cf. Walsh [187, p. 363) and
will be denoted by p, ,.(2), ie,
em=lPgmlc- (2.6)

Prob. I1I also has a unique solution, which is characterized by an equioscillation
property (cf. [9]), and we denote it by T*#(x). Thus,

&(o, f,m)=| Tn(la’ﬁ)”[_1,1]~ 2.7)

When s=0, Prob. IT has infinitely many solutions of the form z” —¢®, 0< 0 <2 x;
however, if s=1 we shall show below that Prob. IT has a unique solution and it
will be denoted by P, (z). Thus

Ew=IE llc, sz1, mz0. (2.8)

To establish the relationship between the solutions of Problems I and 1L, we
require two lemmas. The first is a slight generalization of an exercise in [10],
which is stated without proof.

Lemma 2.1 (Polya-Szego [10], v. 1, p. 108). Let p(z) be a polynomial of degree n
all of whose zeros lie in |z| <1 and let p*(z) denote the reciprocal polynomial of
p(2), defined by

p*(z):=z"p(1/Z). (2.9)

Then, the polynomial z* p(z)+ €' p*(z), for k any nonnegative integer and 0 real,
has all its zeros on C: |z|=1.

The second result which we need is the well-known Erdds-Lax theorem.

Lemma 2.2 (Lax [7]). Let P(z) be a polynomial of degree n all of whose zeros lie
on or exterior to C: |z|=1. Then

1P <5 1P| (2.10)

g~
Furthermore, if P has all its zeros on C, thenwequality holds in (2.10).

We now relate the solutions of Prob. I with those of Prob. II by

Theorem 2.3. For each pair s, m, of nonnegative integers, let Pem(2)=(z—=1)°(2"
+...)en, . be the unique solution to Prob. 1, and let P, 2)=(—1p" "+

be any polynomial in =€, , for which |[B | =E - Then,
ps,m(Z)EPs/-{»l,m(Z)/(S_{_m-l_1)7 (211)
es,m:Es-i» 1,m/2' (212)

Consequently, F,_, ,(z) is unique.

Proof. Since p; ,(2) is unique, its coefficients must be real, and so its nonreal
roots occur in complex conjugate pairs. Furthermore, p, ,(z) has a zero of
precise multiplicity s at z=1 and its m remaining zeros li¢ interior to C, as we
now show.
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For m=1, write p, ,(z)=(z—1)* [] (z—a,), and assume that, for some k, we
have |o,|=1. If, for 6>0, we set ~ *=1

r@ﬁ%=mm@(§%t;?%>

then it is easy to see that for & sufficiently small [r(;0)llc <e, = Py mlc, Which
is a contradiction. Hence, |o,| <1 for 1Sk<m.
Next, we define the polynomial Q(z) by

0(2):=2p, ,u(2) + (= 1)1 p, (2), (2.13)

where pf,(z) is the reciprocal polynomial of Ps.m(2) (cf (2.9)). It is quickly
verified that Q(z) is a monic polynomial of exact degree s+m+ 1 with a zero of
multiplicity s+1 at z=1. Also, since all the zeros of p, ,(2) lie in |z]=1, it
follows from Lemma 2.1 that Q(z)en$, , ..

Now as Q'(z)/(s+m+1)emn, ,, is monic, it is a competitor of p ,(z). Hence, on
applying Lemma 2.2, we obtain

Ql

S mal =310l = 1pg mlle: (2.14)

eS,m: Hpg,mi‘\c é

l Cc

where the last inequality follows by applying the triangle inequality to (2.13).
But, since p, ,(z) is unique, we have

Pym(D=0Q/(2)/(s+m+1). (2.15)

Next we show that Q(z)=P_, ,(z). From the definition of F_, ,(z) as an
extremal for Prob. II, we have

Ei i m=IE 1 mlc=10lc (2.16)

On the other hand, as P, ,(2)/(s+m+1) is an admissible polynomial for
Prob. I, we have from (2.15) that

) Ql Psl+l m
o - - . ‘ 2.17
€sm Hpstmic s+m+1lc lls+m+1|¢ ( )

But since all the zeros of Q(z) and P ,(z) lie on C, it follows from (2.17) and
the second part of Lemma 2.2 that

1Qlc =B, mlc (2.18)

Consequently, from (2.16), we have that equality holds in (2.18) and, a fortiori, in
(2.17). Thus, from the uniqueness of solutions to Prob. I, we have

0()=(s+m+ 1) py (O dt=F, , (2), (2.19)
1

which proves that P, | ,(z) is unique. Finally, Eq. (2.12) follows from (2.19) and
(2.14). B
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From the previous discussion, for each pair of integers s20, m=0, the
polynomial p,(z) has a zero of precise order s at z=1 and its m remaining
zeros lie interior to C. By Theorem 2.3 then, the C-polynomial B_, ,(z) must
have real coefficients with a zero of order exactly s+1 at z=1, and its nonreal
zeros must be simple, occurring in complex conjugate pairs on C. Under the
mapping x=(z+z")/2, a typical factor of B, ,(2) of the form (z —¢€'?) (z —e~'9)
becomes 2 z(x —cos ¢). This fact immediately enables us to relate the solutions

of Prob. II with those of Prob. I1I.

Theorem 2.4. For each pair of integers s> 1, mz0, we have

. (=122 T2z 42-9/2),  m even; (220
PSPPSR TR (2427 )/2),  m odd; '

_f2brmiZe(s/2,0,m/2), m even; (2.21)
ST 29 M2 6(5/2,1/2,(im = 1)/2),  m odd, '

where . (z) denotes the solution to Prob. 11 and T'*#(x)denotes the solution of
Prob. 111.

, Now, in order to solve the problem of Halasz and Blatt, we need only
determine the value e, , =y, , for each integer m=0. However, in the light of
equations (2.12) and (2.21), this is equivalent to solving for &(1,0,v) and
e(1,1/2,v), for v=0,1,2,.... In so doing, we shall establish

Theorem 2.5. For each nonnegative integer m,

T —(m+2)
= . 222
€ m [0052(m+2)] (2.22)

Consequently, recalling (1.3) and (1.4), the solution to the Haldsz problem is

1 T n+1
=3 = — >
Aoy [cos 2n+ 1)] , n=1. (2.23)

el,n~ 1

Proof. For the case m=2v, we determine &(1, 0, v) by exhibiting the real function
T/ %x) in terms of the classical Chebyshey polynomial of the first kind,
T, 1(x):=cos(v+1)0, with x=cos 0 and v=0. It is well-known (cf [9], p.32)
that T, (x) has an alternation set of precisely v+2 points in the interval
[—1,1], and its largest zero occurs at x,:=cos[n/(2(v+1))]. Thus, with 7 (x):
=(x,—1+(x,+1)x)/2, the polynomial T, 1(t,(x)) vanishes at x=1 and has
exactly v+ 1 alternants in [ —1,1]. After normalizing the leading coefficient, we
have

T 0= =2(1+x)"" DT, (1,(x), (2.24)

v

—2(v+1)
" ] (2.25)

1,0,v)=2(1 f<v+1>:2—v[ T
e(1,0,v)=2(1+x,) cos4(v+1)

For the case when m=2v—1, we obtain &(1, 1/2,v—1) by considering modi-
fied Chebyshev polynomials of the second kind, U, (x):=sin[(2v+1)6]/sin 0,
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with x=cos 6 and v=1. U, (x) is an even polynomial which, when weighted by
the factor Vt?, has an alternation set of exactly 2v+1 points in [—1,1].
Further, U, (x) has its smallest positive zero at y,:=cos[v n/(2v+1)]. Thus, for
x in the positive interval [yZ, 1], we put U,(x):= Ulv(ﬂ)' The real polynomial
Uv(x)env vanishes at x=y2 and the real function }/1—x U,(x) has exactly v
alternants in [y2, 1]. Hence, with the transformation r,(x):==(y? +1+(y; = 1)x)/2.
and after the normalization of the leading coefficient, we obtain

T =(= 1127 21 =) 2y T () Oy (), (226)

—(2ve1)
3y 1)=2- VU2 —y2)—v L2 =12 [ ] _
8(1, 1/ , V ) 2 (1 yv) coSs _—‘2(2‘)_’__1)

(2.27)
Finally, from Egs. (2.12) and (2.21), we have
el,2v=E2,2v/2=2v8(1_910)2v)9 Véoo (228)
61,2v71:E2,2v~—1/2:2v / E(Ia 1/2,\/——1), "EL

which, utilizing (2.25) and (2.27), gives the desired Eq. (2.22). &

Employing Theorems (2.3), (2.4), and (2.5), we can explicitly determine the
extremal polynomials p; ,(z) of Prob. L. These are given in Table 2.1, for m
=0,1,2,3.

Table 2.1. p, ,(2), m=0,1,2,3.

pro@=(—1)

P12 =(z— 1) (z+1/3)

Pra(5)=(— D) {22 —(8—6)/2z+(3-2/2)}

Prs(2)=(z— 1) {522 +(8Y/5-1522+(21/5-3)z+(5-2/3)}/5

We remark from (2.23) that 1, ~1—n?/8n as n— oo, which shows that the
lower estimate of (1.2) found by Rahman and Schmeisser [12] was in fact best
possible, asymptotically.

As an easy application of Theorem 2.5 we have

Corollary 2.6. For each pair of integers sz 1, n=0, the solution to the extremal
problem

Von=min{[(z* = 1) (e g,(2)=2"+...€7,} (2.29)

is given by y, ,=e, ,={cos(m/2(m+2))} ~"*?, where m=[n/s] is the integer part
of n/s.

The proof of Corollary 2.6 follows from the fact that (z*—1) 4, (2)=2"py (2%
is the unique extremal polynomial for (2.29) when n=ms+r.

Concerning the value of e ,, in the case when s> 1, we have not been able to
determine an explicit representation for e, . However, we do give upper and
lower estimates in
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Theorem 2.7. For each pair of integers s>1, m=0, we have

LynSe, ,<V/s+m+1L,, (2.30)

/ \1/2
whereLsm::[(m+2s)/(’n+s)] ‘
: s s

Proof. For s fixed, let {¢,,(2)}2_, denote the sequence of the monic polynomials
of respective degree m which are orthogonal on C: lz]=1 with respect to the
weight function |z—1|>. Erdés and Turan [2] showed that

m+s

-1
. )
o,

%glz-ll”lm(z)ledzl: (mt23> (

We obtain the left-hand inequality of (2.30), since (cf. [17], p. 289)

S5 [Ip )2 del e? (231)
Il

s,m:zn =%sm"

The right-hand inequality of (2.30) follows from (cf. [17], p. 290)

s+m

Cn=le=1P b, ESL,, Y |3=G+m+ )2, § (2.32)
k=0

In our next two results, using the equivalence theorems of this section, we
discuss the location of the zeros of the solutions to Prob.II and Prob. IIL. We
postpone the discussion about the zeros of the solutions to Prob. I until §3. We
first examine the location of the zeros of T®#(x), the solution of Prob. IIL.
Because of the similarity of this result with those of [6] and [16] we state
without proof

Lemma 2.8. Let o, 20, and let m be any nonnegative integer. Then TP (x) has
an alternation set of exactly m+1 points in the interval [a, b], where a and b are
given by

a=a(o, f,m):=pv—1/(1-p* (1 -2,
b=b(o, f,m):=pv+1/(1-p) (1—v?),

with p:=(B+a)/e+p+m) and vi=(B—a)[o+f+m). Furthermore, as T P(x):
has exactly m zeros interior to [ —1, 1], they must lie in (a, b).

. (2.33)

As an easy consequence of Lemma 2.8 and Eq.(2.20) of Theorem 2.4, we
have, for the solutions P,_,,(z) of Prob. II,

Corollary 2.9. For each pair of integers s= 1, mz0, the zeros of B .(z) different
from z=1 all lie on the arc

{z:lz]=1, Rez =1 —2(s/(s + m))?}. (2.34)
In proving Corollary 2.9, one only needs to observe that

b(s/2,1/2,(m—1)/2) <b(s/2,0, m/2) = 1 —2(s/(s +m))2. (2.35)
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§3. Growth Estimates

In this section, we determine growth estimates for polynomials from =, (cf.
(2.1)). These upper estimates are obtained with respect to the unit circle, and are
shown, in a limiting sense, to be best possible. For analogous results with respect
to real intervals, we refer the reader to [5, 6, 8, 15], and [16].

Before stating our estimates we introduce some needed notation. For
0<6<1 fixed, we let 4, denote the arc of the unit circle given by

Ay:={z:]z|=1, Rez<1-267}, 3.1
and let €* denote the extended complex plane. Then the function

YI+0P()—iy1-0
w=¢(z)=0¢(z; 0):= 0y —iy/150° (3.2)

where ((z)={(z; 0):=i0(1—0>)""2(z+1)Jz—1) and Y():=(+)/*~1 (with
the branch chosen so that |¥({)|> 1), maps €*\ 4, in the z-plane conformally
onto |w|>1 in the w-plane so that the points at infinity correspond to each
other. Next, we put

0

(D
I I‘
G(z; 0):= ¢()¢1)¢()

1 zeC*\A4,,
1, ze4,,

(3.3)

where ¢(z)=¢(z; 0) is defined in Eq. (3.2). We further extend the definition of
G(z; 0) continuously to the case §=1 by setting

G(z; D):=lz—1]/2. (3.4)
With the above definitions, we now prove

Theorem 3.1. If p(z)en, ,, (cf. (2.1)), where s=1, m=0, then

PPl 4, [Glzss/s +m)P™, for all zeCT*. (3.5
Consequently, .
(@) < pl[Gz;s/s+m)I*™™,  for all zeC*. (3.6)

Proof. As the inequality (3.5) follows trivially from (3.4) when m=0, we assume
m>0. For each 0,0<0<1, we combine two lemmas of Walsh ([18] p- 250) to
obtain the estimate

-0 |
$(1) p(z)— 11
where zeC*\ A4, and $(z)=¢(z;0) (cf. [5, 6]). Selecting 0=s/(s+m) in the last

inequality, and recalling the definition in (3.3), we deduce the desired inequality
(35). &

PI= [Pl |01
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We remark that although inequality (3.6) follows from (3.5) by the apparently
crude observation that 4, ,, < C, we shall show in Theorem 3.3 that, in fact,
(3.6) is sharp in a certain limiting sense. Moreover, even in the case s=1, the
estimate of (3.6) appears to improve upon known bounds derived by Giroux and
Rahman [3].

We next mention some properties of the function G(z; 0). Clearly G(1; 0)=0,
and G(z;0) >0 as |z]—>o0. It is also straightforward to verify that the level
curve G(z; 0)=1is a simple closed curve consisting, in part, of the arc A, and
containing in its interior the complementary arc, C\4,, as well as the open unit
disk. We denote this interior by A(0), i.e.,

A():={z: G(z; 0) <1}, (3.7)

Figure 3.1 illustrates the particular level curve G(z; H=1.

Fig. 3.1. G(z;3)=1 is indicated by a solid line

With the above remarks, Theorem 3.1 immediately implies

Corollary 3.2. If p(z)en, ,,, where s=1, m=0, and p(z) is not identically zero, then
p@I<lplle,  for all ze A(s/(s+m)). (3.8)
Furthermore, if (e C and |p(&)l=1plic, then ¢ lies on the arc Ay ., (cl. (3.1)).

We next show that the estimates of (3.6) (and hence (3.5)) are best possible in
the limit as s and m become large. For this purpose, we employ the solutions
F ,.(z) to Prob. II (cf. (2.4)) and recall (cf. (2.8)) that E, ..=E .lc-

Theorem 3.3. Let 0<0=1 be fixed and let {(s;,m): s,=1, m; 20} | be any
infinite sequence of ordered pairs of integers for which i

lim (s;+m)=o0 and lim s;/(s; +m,;) = 0. (3.9)
Then,
lim (ESi’m!)l/(sﬁmx‘) :1/(1 + 6)1 +0(1 _ 9)1 -0 _ :A(@), (310)

i— 00
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and

lim |B,, (2|16 = A(0)- G(z; 6),  for all zeC*\ 4, (3.11)

i— o
the convergence in (3.11) being uniform on any compact set omitting A,.

Proof. Equation (3.10) follows, recalling (2.12) and (2.30), from an application of
Stirling’s formula. The equality of (3.11) follows, after taking logarithms, by
imitating the normal families argument given in [6] or [16]. This argument is
facilitated by the fact (cf. Cor. 2.9) that, except for z=1, the zeros of B_, (z) all
lie on the arc 4, , > 50 that In|B,, ()| is harmonic in the complement of this
arc, except at z=1 and z=00. f§

In §2, we discussed the behavior of zeros of the solutions to Prob. II and
Prob. II1. Our next result contains information regarding the behavior of the
zeros of the solutions p; ,,(z) to Prob. I (cf. (2.3)), for large s and m.

Theorem 3.4. Let 6 and {(s;, m;): 5,21, m; =0} | be as in Theorem 3.3. Then,

lim |p,. ,, (2)/SF™ = A(0)- G(z; 0),  for all zeCT*\ A4, (3.12)
uniformly on any compact set omitting A,. Moreover, the limit points of the zeros
of the pg, ,.(2), different from z=1, all lie on the arc A,.

Remark. From the proof of Theorem 2.3, the non-unity zeros of each p,, , (z) lie
in |z| <1, but we shall prove that the limit points of these zeros are, in fact, all on
the arc 4, of |z|=1.

Proof. For an appropriate choice of branches, Eq. (3.11) implies that
lim (B, (2) /6™ D= A(0) V1, (3.13)

uniformly on each closed disk in the complement of 4,0 {1}, where U = Ul(z; 0):
=InG(z; 0) and V=V(z; 6) denotes a harmonic conjugate of U(z; 0). Taking the
logarithmic derivative in (3.13), and recalling the relationship (2.11), we have

fim Peend® g U,(z; )= :H(z; 0), (3.14)

i—o Lgp 1,mi(z)

locally uniformly in the complement of Ayu{l}. It can be verified that the
product (z—1) H(z; 0) is analytic and nonzero for z¢Ay,u{ooc}, even at z=1.
Hence, (z—1)p, ,(2)/P, .1 m(2) tends to (z—1) H(z; 0), locally uniformly in
C\A4,. Furthermore, a slight modification of the proof of (3.11) shows that
|P (2)/(z — D)|Mstm) 5 A(6) G(z; 0), the convergence being locally uniform in

si+1,m;

C*\ A4,. Thus, (3.12) follows upon writing

P - -1 1/(si+my)
lim [, (2} 00 = limn | Bt D) 2D P DTy (3.15)

e ) R T e

We conclude with an application of Theorems 3.1 and 3.3.
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Corollary 3.5. Let 0 and {(s;,m;): s;=1, m;20}7, be as in Theorem 3.3. If
ip:i(2)}{2 ¢ is any sequence of polynomials such that p{z)eng, . for each i (cf. (2.1))
and

lim sup [[p,|¢/ <1, (3.16)
then
}im pi(z2)=0,  for all ze A(H), (3.17)

the convergence in (3.17) being uniform on each compact subset of A(6). Moreover,
A(0) is the largest possible open set of convergence to zero for the class of such
polynomial sequences {p/(z)}.

Proof. Let K be any compact subset of A(6). For each i=1, we apply inequality
(3.6) to obtain

Pl = pilic 1GC- 5 si/(s; +m) I
Thus, from the hypotheses (3.9) and (3.16), we have

lim sup [[[p; g1V < 1-Tim sup [G(+ 5 s,/(s,+m) | x = 1G(~ ; O)] . (3.18)
where the last equality follows from the continuity of the function G. Since
1G(-; 0, <1, it follows that | ;| —0 as i— oc.

Finally, if we select p,(z): =P, .(2/E, .. 121, then this sequence satisfies the
hypotheses of Corollary 3.5 and, from (3.11), we have

lim [py(2)| /™ =G(z; 0),  for all zeC*\4,.

Hence, {p,(2)}{ converges to zero in A(6), but diverges for z in the complement
of the closure A(6). B

We remark that, from Corollary 3.2, the hypothesis (3.16) is equivalent to the
assumption

lim sup [lp,[{/¢ ) <1, : (3.19)
where A=A, 121
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