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ABSTRACT

A new proof, based on the Perron-Frobenius theory of nonnegative matrices, is
given of a result of Hurwitz on the sharpness of the classical Enestrom-Kakeya
theorem for estimating the moduli of the zeros of a polynomial with positive real
coefficients. It is then shown (Theorem 2) that the zeros of a particular set of
polynomials fill out the Enestrom-Kakeya annulus in a precise manner, and this is
illustrated by numerical results in Fig. 1.

1. INTRODUCTION

The classical theorem due to Enestrdm [1] and Kakeya [4] for finding
bounds for the moduli of the zeros of polynomials having positive real
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coefficients is often stated as (cf. Henrici [2, p. 462], Marden [6, p. 136], and
Polya-Szeg6 [8, p. 107])

Treorem A (Enestrém-Kakeya). Let p,(2)=27_a;2' be any poly-
nomial whose coefficients satisfy

ao>al>az>"'>an>0.

Then p,(2) has no zeros in the open unit disk {zE€C:|z|<1}.

An equivalent, but perhaps more useful, statement of the above theorem,
due in fact to Enestrom [1], is the following:

TueoreM B.  Let p,(2)=27_.a;z', n>1, be any polynomial with a,>0
for all 0<i<n. Setting

a=a[p,]:= min {g/a,,}, B=pB[p,):= max {g/a,,}, (1)

0<i<n 0<i<n

then all the zeros of p, are contained in the annulus
a< |z < B (2)

An obvious question that can be asked is whether both inequalities of (2)
of Theorem B are sharp, in the sense that polynomials with positive coeffi-
cents can be found having zeros either on |z|=a or on |z|= B. Hurwitz [3]
answered this question affirmatively over sixty years ago, and showed
moreover that such extremal polynomials have a very special characteriza-
tion. What will be shown here in Sec. 2 is that this special characterization
(Theorem 1) can be established by means of the Perron-Frobenius theory of
nonnegative matrices, thereby affording an alternative proof of this classical
analysis result. It should be remarked that Theorem 1, to be given below,
slightly extends (and corrects) the original result of Hurwitz, as well as more
recent results of Tomi¢ [10] and Ostrowski [7]. In Sec. 3, it will then be
shown (in Theorem 2) that the zeros of a particular set of polynomials fill out
the Enestrom-Kakeya annulus (2) in a precise manner. The remainder of this
section gives some needed notation.

For every nonnegative integer n, define

= { (2)= éaz’a>0fora110 ,<n}. (3)
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If p,Em,}, then set

(pa):={i=12...n+1:Ba,,, ;—a, ;>0}, where a_;:=0,

I
el

S
S=S8(p.):={j=12....,n+1:q_,—0ag>0}, where a,,;:=0, (4)

where a and B for p, are defined in (1). Note that these sets are nonempty,
since n+1 is an element of both sets. Also associated with p, Em," are the

positive integers

F=F(p)i=ged {j:€S),

k= K(p.):= ged. {j:iES).

2. THEOREM 1

With the notation of Sec. 1, we now establish

Tueorem 1. For any p, Em," with n>1, all the zeros of p, lie in the
annulus (cf. (1))

a <z < B (6)

Moreover, p, can vanish on |z|= B iff k>1 (cf. (5)). If k> 1, the zeros of p,
on |z|= B are simple and given precisely by

{ Bexp2mij/k: j=1,2,....k—1}, (7
and p, has the form
Pa(B2) = (14 2+22+ -+ +2571) - q,.(z), (8)

where q,, Emy. If m > 1, then all zeros of q,,(w) lie in |w| <1, and

Blqm] < 1. 9)
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Similarly, p, can vanish on |z|= a iff k> 1. If k> 1, the zeros of p, on |z|=«a
are simple and given precisely by

{aexp2mij/k: j=1,2,...,k—1}, (10)
and p, has the form
Spla/s)= (1+at - 425 ), (1)

where 1, Em,y. If m>1, then all the zeros of r,(w) lie in |w|<1 and
Blr. 1< 1.

Proof. For any p,(z)=27_ Oaizi in 77, it can be verified from (1) that

~(1-2)p(£)

= on+l __ . n+1—-1=:~ 12
aan z 121 C,Z pn+1(z)’ ( )
where
a, i, :
B”*Z ’B" 1>0 for 1<j<n,
G=1 . " (13)
an[O?" >0 for j=n+1

so that (1—2)p,(Bz) and p,,,(z) have the same zeros. The (n+1)X(n+1)
companion matrix B for g, , , is given by

o - - - 0 0 ¢4y
1 0 0 ¢
1 0 0 c,_,
B= : , (14)
0 O 0 ¢
0 0 0 1 ¢

and, as the coefficients ¢; from (13) and (1) are all nonnegative, then B is a
nonnegative matrix. Moreover, since ¢, ; >0 from (13), then B is irreducible
(cf. [11, p. 20]). Next, because z=1 is a zero of p,,, ; from (12), it follows that
the Perron eigenvalue of B is necessarily unity, so that (cf. [11, p. 30]) all the



ENESTROM-KAKEYA THEOREM 9

zeros of p, ., satisfy |z <1. Because of (12), all zeros of p, then satisfy
|z| < B, which establishes the second inequality of (6).

Next, suppose that p, has a zero on |z| = 8, which implies that 5, ; has at
least two zeros on |z|=1. Equivalently, B has at least two eigenvalues of
modulus unity. This can happen, from the Perron-Frobenius theory of
nonnegative matrices (cf. [11, p. 35]) iff B is cyclic of some index h > 1. Next,
using Theorem 2.9 of [11, p. 49], this cyclic index can be expressed as the
greatest common divisor of the lengths of all closed paths in the directed
graph for the matrix B which connect the vertex V,,, to itself. From the
structure of B in (14), it follows that any ¢,>0 gives rise to such a closed
path, through the vertex V,,, of length precisely j. In other words, B is
cyclic of index h where

h=gecd{j: ¢>0}. (15)
But, from the definitions of (4) and (5), it can be verified that h=k=k(p,).
Thus, p, can vanish on |z|= 8 iff k> 1. Next, if k>1, then the eigenvalues of

B having modulus equal to the Perron eigenvalue (which is unity) are k in
number, are simple, and are given by (cf. [11, p. 38])

{exp2mij/k: j=0,1,2,...,k—1}. (16)
Hence, with (12), the number of zeros of p, on |z|=p is k—1, and these
zeros, from (16), are all simple, and are given precisely by (7). Finally, the

cyclic nature of B implies that its characteristic polynomial, namely §, , ;(z),
must satisfy (cf. [11, p. 39])

Posa(2) = (L=25) G ("),

where all the zeros of g, (w) lie in |w| <1. On dividing the above equation
by 1—2z and on recalling (12), then

pu( B2)=(1+ 2+ - - - +25 1), (zF), (17)

where g,,(w)= —a,B"j,, (w), which establishes (8).
Next, if q,,(w) =27 dw’, then from (17),

P,.(Bz) = d0(1+z+' . +ZE'1)+dl(z’;+. .. +z2k_—1)

+ooe td, (34 g DR, (18)
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Evidently, all the coefficients d, must be positive, since, by hypothesis,
p. €7, , whence g,, €7, . If m>1, the maximum ratio of successive coef-
ficients in (18) is just

max{l; max [d,./dHl}} =1,

0<i<m

the last equality following from the definition of 8 for p,. Thus,

Blgu(w)]:= max [d/d,] <1,

0<i<m

which establishes (9). The remainder of the proof follows similarly upon )’
considering the polynomial 2™p,(t/ 2). B

The history concerning Theorem B and Theorem 1 is worth commenting
on. Kakeya in [4] stated that strict inequality held throughout (2) in Theorem
B, and this error was promptly pointed out by Kempner [5], who essentially
deduced the sufficiency of k> 1 in Theorem 1 for p, €7} to have zeros on
|z|=B. Theorem 1 is, as previously stated, a slight extension of the result of
Hurwitz [3], but it should be noted that Hurwitz incorrectly claimed (cf. [3,
p- 92, line 1]) that p, €7, has zeros on, say, |z|=a iff the set S of (4)
consists of all multiples k, 2k,...,n+1. This same mistake appears also in
Marden [6, p. 138, Exercise 10]. That this need not be the case is illustrated
in the example of (19) below. Next, Tomi¢ [10, p. 149] later independently
established Hurwitz’s result, but Tomi¢’s theorem incorrectly has k dividing
n—1, rather than n+1, for p,En," to have zeros on |z|=pg. Finally,
Theorem 1 also improves upon an extension found most recently in Ostrow-
ski [7, p. 90], where a sufficient condition (viz., that k= 1) is given for

P, Em, to have no zeros on |z|= .
To illustrate the result of Theorem 1, consider the following polynomial:

pr(2) =343z + 22+ 228 + 2* + P+ 28+ 27, (19)

which is in 7;". For this polynomial, we find that

a=1, L =2
S=1{248}, S={1,23567,8)},
k=2, k=1
Thus, as a consequence of Theorem 1, p has a unique simple zero z= —1 on

|z|=1, with all remaining zeros lying in the open annulus 1< |2| <2.
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In the previous example, where 0 <a <f3, p; had a zero on one boundary
of the annulus a <[] < B, viz. on |z|=a, but none on the other boundary.
That this is in general the case is now shown in the apparently new result of

CoroLrary 1. Let p, €, with n>1 be such that (cf. (4)) 0<a<p.
Then, it is not possible for p, to simultaneously have zeros on |z|=a and on

l2l= 8.

Proof. Suppose that p, has zeros on |z|= 8. Then k> 1 from Theorem 1,
and from (8) it follows that

PulBz) = (1424 +2" ), ()

= y(l+z+--- +25 )+

where q,,(0): =y, >0. Writing p,(z)=2?_ya,2/, this implies that a,= y,, and
that a, = v,/ B. Since 0 <a < by hypothesis, then a,— aa,=y,{1—a/B} >
0. But from (4), S then contains unity, whence k=1 from (5). Invoking
Theorem 1, p, then has no zeros on |z|=a. The proof supposing p, to have
zeros on |z| = a is similar. [ ]

As a useful consequence of Theorem 2, we also have

CororLrary 2. If p, €7, with n > 1 satisfies fa, — a,>0, then all zeros
of p, satisfy |2| <B.

Proof. By hypothesis [cf. (4)], SO {n,n+1}, whence k=1. Then apply
Theorem 1. B

As an application of Corollary 2, consider s,(z): =37%_,2*/ k!, the familiar
nth partial sum of e¢*. For every n>2, s,(2) satisfies the hypotheses of
Corollary 2 with B(s,)=n, so that all the zeros of s,(2) satisfy

|zl <n  Vn>2. (20)

Actually, the above inequality is quite sharp asymptotically in the sense that
s, is known (cf. Saff and Varga [9]) to have a zero of the form

n+Ven w, with lim w,=t<—1.354810+i(1.991467), (21)

n—>co
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where t, is a complex zero of erfc (w). A short calculation using (21) shows
that the relative error in the Enestrém-Kakeya upper bound of (20) is
O(n~/?) as n—oo0.

3. THEOREM 2

To study the sharpness of Theorem B, we introduce the following
notation. If 7, denotes, as usual, the set of all real polynomials of degree at
most n, then for any p, €7, with n> 1 we set

p =p(p,):=min{[{]:p,($)=0},  p=p(p,):=max{[{|:p,(§)=0}.

(22)
Thus, as a consequence of Theorem B, for any p, €7 with n> 1, we have
a<p<p<p (23)

Next, for any two fixed positive real numbers p and » with 0<u<p,
define the set of polynomials

P, ,:={p,En,n>1arbitrary:a[ p,]=pand B[ p,]=r}, (24)
which is nonempty, since pv + rz+ e Pw' Next, put
Z,,.={§EC:p,({)=0for somep,EP,,}. (25)
Clearly, as a consequence of Theorem B, it follows that
Z(P,,) CA,,: = {z€C:u<|z]<r}. (26)

One measure of sharpness of the Enestrom-Kakeya theorem is the sense in
which Z(F, ,) fills out the closed annulus A, ,. It is, of course, clear from
Theorem 1 that Z(F, ,) contains no points of the interval [ u,»], nor does it
contain any point pe® or ve” where 8 is an irrational multiple of 7. We shall,
however, establish the new result of
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THEOREM 2. For any positive real numbers p. and v with 0<p <,

Z(P,,) =A,,. (27)
To prove Theorem 2, we first establish

Lemma 1. For any p(2)=2"_o@z* in m), n>1, and for any g, (z)=
27:=0bkzk in 771:’ m> 1’ then gvn(z"+1) 'pn(Z)E pn(z) 6771:'-+m(n+ 1) and (Cf (1))

Bl p(2)] =max{ B pu] ]

(28)

o &l )y (2) ] =i o] p, ] o 2] .

a

Proof. Since g, (z"*Y)-p,(2)=bylay + aiz+ - - - +a,z")+ bz"*Y(a,
+-- +a,z")+ - +b,z"" g+ - -+ +a,z"), then

a, [ by a, b,y
2 ao b2 > b ao bm b

OQ 2
—
Py
Ll =)

|

B[ g.,.(Z"“)'pn(Z)]=maX{ Bl pa],—"
so that

Bl ) pale)] =max{ B p )22 B ] ).

o
which establishes the first part of (28). The second part follows similarly. B

As a consequence of Lemma 1, we have

CoroLLARY 3.  For any positive real numbers p’ and v’ with 0<p < p’ <
v' <, then

Z(p,,) c Z(P,,). (29)

Proof. Let { be any point in Z(P, ), so that there is a p, € P, , with

P.($)=0, B(p,) =7, and a(p,)=p'. Writing pn(z)=2;.’=0aiz", consider any
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g.(z) in w7 with m >2 for which

Bl g.] = apv/a,, o g,] =ayn/a,

n+1)

From Lemma 1, h(z):=g,(z ‘pa(%) is in P, .. But since p,({)=0, then
h($)=0 also, whence { € Z(P, ,). B

Proof of Theorem 2. 1t is clear from Theorem 1 that, for any 8’ >0,
Z(Aﬁ/,ﬁ,) = { B’e" with 0<# <27 :8 is a rational multiple of 7} (30)
Thus, on choosing 8’=y" in Corollary 2 and letting 8’ run through the

interval [ B,v], we evidently have, from (26), (30), and Corollary 3, the
desired closure result of (27). B

The essence of Theorem 2 is that the zeros of the polynomials in P, , “fill
out” the closed annulus A, ,. To illustrate this numerically, consider the
subset of P, , defined by ‘

n
P{E19). = { pa(z)= > a,.zi €x,", 1<n<6:a[ p,]=14] P.]=2
i=0

and ¢, €{1,2,3,...,15,16} for0<;<n}. (31)

The number of distinct polynomials in P{%'9 is approximately 26,120, each
of whose zeros have been plotted in Fig. 1, up to a resolution of 5.

In a subsequent paper, we will consider the sharpness of the Enestrém-
Kakeya theorem in another sense. If p, is any fixed polynomial in 7, such
that p, has no zeros on the ray [0, + ), let Q,, be the (possibly empty)
subset defined by [cf. (3)]

Qm = {qm Eﬂm :pn’qmewn_:m}’
and set [cf. (1)]

EK,,(p,): = inf{ B[ oG] Gu€Qn}  Vm >0,

where EK,, (p,), the mth Enestrom-Kakeya functional of p,, is defined to be
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x
xX x
x x

2,
R

=

x
x x*

e x
,!

x=,
x
Pl

Fic. 1. Zeros of P{%'® [cf. Eq. (31)].

+ o0 if Q,, is empty. What is to be investigated is in what sense
lim_ EK,,(p,) = 3(p.)

is valid.

We wish to thank Mr. Howard Fraser of Kent State University for
determining and plotting the zeros in Fig. 1.
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