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1. INTRODUCTION

At the December 1976 Tampa Conference on Rational Approximation
with Emphasis on Applications of Padé Approximants, Lorentz [ 3] presented
results and open problems concerning incomplete polynomials of type 0,
i.e., for a fixed 0 with 0 < 6 < 1, the set of all real or complex polynomials
of the form

n
Z o x¥, where s = 6-n, nanarbitrary nonnegative integer. (1.1)
k=s

These incomplete polynomials of type 0 have been further studied by Saff and
Varga [7-9], by Kemperman and Lorentz [ 1], and by Lorentz [3]. Note that
any incomplete polynomial of type 6 has, from (1.1), a zero at x = 0 of
order at least [n - 0].

In this paper, we consider the more general problem of polynomials
constrained to have zeros at both endpoints of a finite interval. Without
loss of generality, we take this interval to be [—1, +1]. By analogy with
(1.1), for any 0, > 0 and 6, > 0 fixed with 8, + 6, < 1, we consider here
the set of all real or complex polynomials of the form

(x = D" (x + D= )Y Bpx*  where sy =0, -(sy + 5, + m),
k=0
Sz % 92 .(SI + S2 + m). (1.2)
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In Section 2, upper bounds for the growth of polynomials of the form (1.2) are
determined. In Section 3, an analog of the classical Chebyshev polynomials
for constrained polynomials of the form (1.2) is given, and it is shown that
the upper bounds of Section 2 are, in a certain limiting sense, best possible.

2. GROWTH ESTIMATES FOR CONSTRAINED POLYNOMIALS

In the spirit of two lemmas of Walsh [12, p. 250], we prove the following
result of Lemma 2.1 on bounding above the moduli of constrained poly-
nomials. For a related result, see Kemperman and Lorentz [1].

Lemma 2.1. Let & be a closed bounded point set, not a single point, whose
complement K with respect to the extended complex plane is simply connected.
Let w = @(z) denote a function which maps K onto |w| > 1, so that the
points at infinity correspond to each other. Let the (not necessarily distinct)
points oy, k = 1,...,m, lie exterior to &, and let P(z) be a polynomial of degree
n(n = m) which vanishes at each of the points oy (with each o listed according
to its multiplicity). If, on the boundary of &,

|P(2)| = L, 2.1

then, for all z in K,

m

|P(z)| < Llop@)|" T]

k=1

o(z) — @lon)

Pla)p(z) — 1
Proof. Define Q(z) for z in K by means of

o PO T <<p<ak>go<z> - 1)7

. (2.2)

B Lo(2)]" kIJI o(z) — @(oy)

so that Q(z) is analytic in K, even at infinity. Its modulus is continuous in the
exterior of &, and, on the boundary of &, is bounded above by L. Hence, by
the maximum principle,

Q)| £ L, forallzinK,
which gives the desired inequality (2.2). B

Here, we are interested in polynomials constrained to have certain
order zeros at x = —1 and at x = I, and we thus introduce the following
notation. As usual, for each nonnegative integer n, n, denotes the set of
complex polynomials of degree at most n. For every ordered triple of non-
negative integers (s;, S, , m), the set n(s, s,, m) is defined by

sy, 82, m) = {(x — 1)"(x + 1)q(x) : g € 7,5 23)
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Finally, for each continuous g defined on a compact set B, we set
lglls:= max{lg(z)|: z € B}. 24

To obtain growth estimates for constrained polynomials from Lemma
2.1, take the set & now to be some real interval [a,b],with —1 < a < b < +1.
Then,

b+a b—afw+w!
z = h(w):= 5 + 5 < 5 ), (wl>1, (2.5)

maps the exterior of the unit circle in the w-plane onto C*\[a, b] in the z-
plane (where C* denotes the extended complex plane). The function ¢(z)
required by Lemma 2.1 is then the inverse map of y(w), i.e.,

\/z—a+\/z—b
= = , C*\[a, b], 2.6
W@ =T et 2:6)

for some suitable branch of the square root function. For this choice of &
and for the choice oy, = 1, 1 <k < s, anda, = —1,s; + 1 <k <5, +5,,
we have, as an immediate consequence of Lemma 2.1,

Corollary 2.2. Let p € n(sy, 55, m), and set n:= s, + s, + m. Then, for
all z e C*\[a, b},

51 52

o(z) — (1) e

p(Dep(z) — 1

@(z) — o(—1)
o(—Do(z) — 1

P = 1Pl @()]"

where ¢(z) is given by (2.6).

In a typical application, it may be known that a polynomial from
n(sy, S5, m) is bounded above in modulus on [ —1, 1] by some constant L.
We then wish to choose an interval [a, b], strictly contained in [—1, 1],
so as to optimize the upper bound of (2.7). In what follows, we examine
the behavior of polynomials of large degree from n(s,, s,, m) where s, /n = ¢,
and s,/n 2 0,,for 6, and 8, fixed. We then make use of certain limiting results
to determine the best choice for [a, b], depending only on the relative orders
of contact at x = —1 and at x = 1. As Jacobi polynomials play a significant
role in the determination of such an optimal interval [a, b] and in the results
of Section 3, we briefly summarize some of their basic properties.

For the real parameters o > —1 and f > —1, P™P(x) denotes the
classical Jacobi polynomial of degree n. It is well known (cf. Szego [11,
p. 68]) that if

1
. f (1= XP(1 + 0A(PE ()2 d, 28)
-1
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then the sequence {P™#(x)/\/h{ P} is orthonormal with respect to the
weight function (1 — x)*(1 + x)? in the interval [ -1, 1], i.e,,

1 P ﬁ)( x) P B)( x)
N 2 gfin m _
J—x(l X)*(1 + x) ( o o dx = 8y -
The following representation for A # will be useful (cf. Szego [11, p. 68]):

2ethtl I'n+ o+ DI+ 4+ 1)
Qn+oa+ B+ DI+ DI +o+ f+1)

P B — (2.9)

As a well-known consequence of the theory of orthogonal polynomials,
(cf. Szegd [11, p. 63]), the unique monic polynomial g(x) in 7, which mini-
mizes the integral

+1
f (1 — X1 + D (g(x)? dx

-1
is given explicitly by the monic Jacobi polynomial
2n+ o+ f

»(

n

-1
) PP, (2.10)

It is further well known that the zeros of P #(x), for any n =z 1 and for
any choices of « > —1 and > —1, all lie in (—1, +1). Concerning the
asymptotic location of zeros of particular sequences of Jacobi polynomials,
we state

Lemma 2.3. (Moak et al. [6]) Let a, and b, denote, respectively, the
smallest and largest zeros of P™#(x), where o, > —1 and f, > — 1. Assume
that

1 0, and lim —— _@_, =6,. (211

. o
im ———— = —
n—oc 2n+an+ﬁn n— oo 2n+dn+ﬂn

n

For pu:= 0, + 0, andv:= 0, — 0, set

= a(fy, 0y) = py — /(1 = 1) (1 = v?),
b=b(0,,0,):=pu + ﬂl — 1) = ).

(2.12)

Then,
hma, =a and lim b, = b. (2.13)

n-r o n—r oo

Moreover, the zeros of the sequence {P&P(x)}x. are dense in the interval

[a, b].




BOUNDS FOR INCOMPLETE POLYNOMIALS 425

We make use of this last result in selecting the optimal interval [a, b]
in Corollary 2.2. To every ordered pair (0,, 0,) from the set

Q:={(0,,0,):0,>0,0,>0,0, +0, <1}, (2.14)

there corresponds a unique interval [a, b] with —1 < a < b < 1 from (2.12).
Consequently, for each (8,, 6,) in Q, there exists a unique mapping function

\/z—a+\/z—~b
z) = ;0,05 := , .
P(z) = ¢(z;04,0,) Jisa—vish (2.15)

mapping C*\[a, b] onto the exterior of the unit circle. For (0,, 6,) e Q
and z € C*\[q, b], we now define the function G(z; 6,, 8,) by

@(z) — (1) P(z) — (—1)
p(De(z) — 1 P(—Do(z) — 1
We extend G(z; 0,, 0,) continuously to the interval [a, b] by defining
G(z; 04, 0,) =1 for ze[a,b]. We remark that G(z;0,,0,) is continuous
in the variables #, and 0, and we extend its definition continuously to the
closure Q of Q. For example, when 0, + 0, = 1, we have

G(z) = G(z; 0, 0,) = 20,)7420,) |1 — z|[1 + z|%.  (217)

01

[

(2.16)

G(z2) = G(z; 0, 0,) = I(P(Z)I]

In the special case when 0, = 0, the G function agrees with the corresponding
G function defined by Safl and Varga in [7, 8]. To [acilitate the statement
of the main result of this section, we first mention some simple properties
of the function G(z; 0, 0,).

Note that, as the points at infinity correspond to each other under the
mapping ¢(z), for (0, 0,) fixed in Q, we have

G(z;0(,0,) > o as |z|— oo. (2.18)
Moreover, it is evident from (2.16) that, for (0,, 0,) € Q,
G(—1;0,0,) =0=G(1;0,,0,). (2.19)

Next, we also have the following result of Lemma 2.4. Its proof, being
similar to that of [7, Lemma 4.2], is omitted.

Lemma 2.4. For (0, 9,) fixed in Q, G(x; 0,, 0,), considered as a function
of the real variable x, is strictly decreasing on (— oo, —1) and on (b, 1) and is
strictly increasing on (—1, a) and on (1, + o).

As a consequence of Lemma 2.4 and the properties of (2.18) and (2.19), for
each (0, 0,) € Q there exist two unique real points

p=p0,0)<~1 and o =a(0,0,)>1 (2.20)



426 M. LACHANCE, E. B. SAFF, AND R. S. VARGA

o —————————
qpb———————————

+1

Fig. 2.1. G(x;3/9,5/9), x real.

for which we have
G(p(0,, 0,); 0,,0,) = 1 = G(a(04, 0,); 0, 6). (2:21)

By way of illustration, Fig. 2.1 gives the graph of G(x; 3/9, 5/9) for real values
of x.

We comment that, although we do not have an explicit representation
for p or o in (2.20), numerical estimates for p and ¢ are easily determined.

Since, for each (0, 0,) € Q, the continuous function G(z; 0,, 0,) vanishes
at z = —1and z = 1, we have the existence of neighborhoods about z = —1
and z = + 1 for which G(z; 0,, 8,) < 1. Actually, the level curve G(z; 04, 0,)
= 1, enclosing these neighborhoods, traces out a “barbell”-type curve.
We illustrate this “barbell” configuration in Fig. 2.2 by graphing the level
curve G(z; 3/9,5/9) = L.

Next, for each pair (0,, 0,) in Q, we define the open set

Ay, 0,):= {z:G(z; 04, 0,) < 1}. (2.22)

We now state the main result of this section.

Fig.22. G(z;3/9,5/9) = 1.
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Theorem 2.5.  Let p e n(sy, s,, m) with p not identically constant, and set
n:= sy + s, + m. Then, for all z,

IP@] = [Pl 1,1(G(z5 s1/n, s,/m))". (2.23)
Consequently, for z € A(s,/n, s,/n),
[P = Ipll- 1, 1(G(z5 50/, 55,/m)" < Ipll-1, 15 (2.24)
In particular, if £ e [—1, 1] is such that | p(&)| = [|pll;- 1,1y, then
a(sy/n, s,/n) < & < b(sy/n, s,/n). (2.25)

The statement (2.23) is actually a restatement of Corollary 2.2 in terms of
the function G(z; 0,, 0,). Furthermore, we will show in Section 3 that the
mequality (2.23) is sharp in a certain limiting sense.

In the next two corollaries, we state convergence and interpolation results
for sequences of constrained polynomials.

Corollary 2.6. Let (6, 0,) be fixed in Q and let

k=0 i=1

{pi(z):: (z = 1rv(z + 1)””% ak,izk}OO

by any infinite sequence of complex polynomials satisfying

!im n; = o0 =5y, +s,;+m,i=z1) (2.26)
and
.lim Sy /n; = 04 and Alim 5y./m; = 0,. 2.27)
If
liriiup(l\pi?l[-1_.1])””" <1, (2.28)
then
Vlim pz) =0 for all ze A0y, 0,). (2.29)
Moreover, for any closed subset B of A(64, 8,),
1ill?iiup(\ipills)l/"‘ S IG(-5 04, 05))p < 1. (2.30)

The proof of Corollary 2.6 follows from applying inequality (2.23) to
each polynomial py(z) and from the continuity of G(z; 64, 8,) in the variables
0, and 6,. We will show in Section 3 that Corollary 2.6 gives the largest
possible open set of convergence to zero for the class of such polynomials

pi2).
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Our final result of this section concerns polynomials interpolating a
function f(z) at the points z = —-land z = L.

Corollary 2.7. Let f(z) be analytic at z = —1 and at z = 1. Suppose
there exists a sequence of polynomials {p(z)}7> | withp, e m, Vi,n, <ny <---,
where n,, /n; > 1 as i — oo, and such that

p®) = P, k=0,1,....50 4>

2.31
pP(—=1) = fO(-1), k=0,1,...,8;,,. (23D
Further, suppose that
. Sin . Sy
lim — = 6, and lim =% = 0, (2.32)
im0 M ivo My
and that
lim sup([pill;—1,19"™ = 1. (2.33)

i— o

Then, f(z) is analytic at each point of A(0, 0,) and p{z) — f(z) for z€ A0, 0,),
the convergence being uniform on any closed subset of A(0,, 0,). On a closed
subset B of A(0, 0,) we have the following convergence rate:

limsup | f — pill 5™ = 16G(-: 01, 0y)]p < 1. (2.34)

i— o0

To prove this last result, we consider consecutive differences from the
sequence {f(z) — p{z)}2; which in turn form a sequence of constrained
polynomials {p;, (z) — p{2)}Z . This sequence satisfies the hypotheses of
Corollary 2.6 and hence tends to zero, geometrically in A(0,. 8,).

As an application of Corollary 2.7, we mention an interpolation problem
suggested by Meinardus [5], related to the design of filters. Let g be the real
step function defined for all real r by

1 for t<4%
gty =1 % for t=4% (2.35)
0 for t>1%

and consider the sequence of polynomials {g,(x)}:%, with g, € 7, for all
n = 0, satisfying the conditions
é15"1‘)(()) = g(k)(0)7 k - 07 17 tres }17

() = ¥, k=0,1.....n (2.36)

The polynomials g, are uniquely determined, and, in fact, are explicitly
given by

qn(x) = BZn+ l(x; q) n g O.'/




BOUNDS FOR INCOMPLETE POLYNOMIALS 429

where

n k\(r
B (x; f):= kzof(”;)c)xk(l —x)t

is the Bernstein polynomial of degree n for a given real-valued function on
[0, 17 (cf. Lorentz [2, p. 4]). It is easily seen that {¢,(x)},>, so defined are
uniformly bounded by unity on [0, 1]. Setting p,(x) := ¢, ((x + 1)/2), we
find that the sequence {p,(x)},~ satisfies the hypotheses of Corollary 2.7
with 8, = 0, = 1/2.1In this case, one readily verifies [cf. (2.20)] that p(1/2, 1/2)
= — \/2 and o(1/2, 1/2) = \/5, so that, by Corollary 2.7, we have for real
x that the sequence {p,(x)},=, convergesto 1 for x € (—\/E, 0) and converges
to 0 for x € (0, \/5), the convergence being geometric on any closed sub-
interval of (f\/i, 0) u (0, /2). Consequently, as n— o0, ¢,(t) = g(1),
geometrically on any closed subinterval of
-2 1) (1142
(7))

More generally, for complex ¢, Corollary 2.7 implies that the sequence
q,(t) converges geometrically on each closed subset of

H={teC:(2t— 1)e A(1/2, 1/2)}. (2.37)
Meinardus [5] has been able to show moreover that the sequence g,(1)
diverges for t < (1 — \/2)/2, and for t > (1 + /2)/2. We remark that the
“overconvergence” properties of Bernstein polynomials have been
extensively studied (see Lorentz [2]). In the cases when 0, + 0, = 1, the
convergence region given, via Corollary 2.7, by

teC:(2t — Dye A0y, 0,)}, (2.38)

and by that of Bernstein polynomials, coincide.

3. CONSTRAINED CHEBYSHEV POLYNOMIALS

In [8], the analog of the classical Chebyshev polynomials for polynomials
constrained at one endpoint of an interval by a certain order zero were
studied. In this section, we extend the definition of these constrained poly-
nomials to the two endpoint case. As a consequence, we shall prove that
Theorem 2.5 1s best possible in a certain limiting sense.

Proposition 3.1.  For cach ordered triple of nonnegative integers (s, s, ,m),
there exists a unique monic polynomial Qg o, .(x) in n(sy, s,, m) [cf. (2.3)]
of precise degree n:= s, + s, + m satisfying

]EQsl,sz,mH[-—l, 1} = lnf{i;(‘ - I)Sx(x + l)szxm

— g1, 1y 1genlsy, s, m — 1)}
=:E 3.1

TSy, 82, m
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(where ni(s, S5, m — 1):= {0} i m = 0). Furthermore, for n > 0, Q;, s, m(X)
has an alternation set of preciselym + 1distinct points 53.3"”*'”),]' =0,1,...,m,
with [cf. (2.12)]

a(s,/n, s,/m) < EGrsmm < usem < < Elsusam < (s /n, 5,/n), (3.2)
Sfor which

QS1,S2,m(€§Sl,sz,m)) — (_ 1)31 +m_jEsl,sz,m7 ] — 0’ 17 . (33)

Proof. As the special cases s; + s, = 0 and m = 0 of Proposition 3.1
are clearly true and will in fact be explicitly covered in Proposition 3.2,
assume that s, + s, > Oand thatm > 0. From general linear approximation
theory, it follows that there exists a monic polynomial, say p, in 7(Sq, S5, M)
with

”PH[—1,1] = Eq, s.m-

As a consequence of Theorem 2.5, the polynomial p also satisfies the extremal
problem

1Pl py = IF{(x = DF0e + 12X — g(0)llga, 179 € 751, 52 m — D}

where a = a(sy/n, s»/n) and b = b(s,/n, s,/n) are defined in (2.12). On this
subinterval, the linear space n(s|, s,, m — 1), which has dimension m, satisfies
the Haar condition, which guarantees (cf. Meinardus [4, p. 20]) the unique-
ness of p. From the same result, we have the existence of an alternation set
of at least m + 1 distinct points in [a, b]. If there were m + k alternation
points with k > 1, the derivative of p, a polynomial of degree n — 1, would
have at least n zeros on [ — 1, + 17, and would, consequently, be identically
zero, contradicting the fact that p is monic. Thus, there are precisely m + 1
distinct alternation points satisfying (3.3). &

With the existence of @y, ,, .(x) for each triple of nonnegative integers, we
define

Qspsom®)_ DsiispmlX)

HQsl,sz,m“[—l,l] ES1,52:m

to be the (normalized) constrained Chebyshev polynomial of degree s, + s,
+ m associated with the set n(s,, sy, m) on the interval [ —1, 1]. Let T,(x)
denote as usual the classical Chebyshev polynomial (of the first kind) of
degree n, given by

15, 50 m(X) 1=

(3.4)

T.(x) = cos nd, x = cos 0.

We now summarize some special cases and properties for certain triples
(51, 52, m) in




Proposition 3.2.

(@)
(i)

(1i1)

(iv)

v)

(vi)

(vii)
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Q82,31,m(x) = (" 1)51+32+sz1.52,m(—'~x);
Qo,0,m(x) = 27mTL(X),

__ H—m+1
Eoom =2

Set x,, := cos(n/2m) for m > 0. Then,

o 2 r 1 — Xm+1
QO,I,m(X) - (1 + xm+1)m+1 Tm-i—l[( 2 ) + (

2

B

1 (m — n
0-1m 2 cos| ~— + -
< (1+xm+1){ [erl Ymt1

Ql,l,m(x) = (2X )m+2 Tm+2(xm+2 'X),
m+ 2
2
E e —
e (2xm+2)m+2’
1 m+1—jm
gm : . =01,

Oy, 5, 0(x) = (x — 1)*(x + 1)°%, 5, + 5, >0,

E _ 281 S 2S2 52
51,52,0 — s
Sy + 8, Sy + 8,

églysz, 0)

Qs,s, l(x) = X(X2 - l)sa
s 1/2
Es s, 1 = _23"" *1" B
T 2s + 1/ \2s + 1

é('s,s,l) — (_1)]"’1 ﬁl_ v j= 0, 1:
j 25+ 1)

Qs 2m(x) = (=2)*7"Qg ¢ m(l — 2x?).

1

j=01,...,

,m;

431

m;
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The proofs of the above statements follow easily from the fact (Proposition
3.1) that Q, , .(x) is a monic polynomial and from the existence of the
required alternation set.

We now deduce a domination property for Ty, ,(x) (cf. [8, Proposition

4.
Theorem 3.3. Let p € n(sy, 5,, m), and let
M z max{|p(¢f->"™)|:j=0,1,...,m}.

If x < E§vsem op if x = ESvs2m thep

[P = MIT, s, w(X)]. (3.5
Moreover, for each positive integer k and x real,
P90 = MITE , W, for |xIz L (3.6)

Proof. First, define the polynomial h(x) by means of
h(x):: (X — l)sl(x + 1)32 H(X _ é&sl,sbm)).
j=0

Using the Lagrange interpolation formula, it follows from the definition
of h{x) that

o hG)  p&)

PO= L g i) D
and
Loon =3 ) (3.8)

j=0 (x — f]) h/(éj) ’
where &; = £¢rs»m, j =0, 1, ..., m. Thus, with the hypothesis for M,
(3.7) implies that
= [h(x)]
olsMy — 2
R (]
Next, noting that [8, Proposition 4] establishes the case s; = 0 of this
result, we may assume s, > 0, which implies £, < 1. For xe({,,, 1), we
have, by definition, that |i(x)| = (—1)"*h(x) and that
B = (=17 IH(E)).

Consequently, the right-hand side of (3.9) is equal to (— 1) - M - T, ¢, .(x).
Hence, from (3.9) we have

[P = MIT;, 5, (x)|  for xe (&, 1)

(3.9)
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Arguing similarly for x € (— o0, &) and x € (1, o), the first part of this
theorem is proved. The second portion can be obtained for real x, |x| = 1, by
differentiating the formulas (3.7) and (3.8) k times. B

We may now improve the inequality given in (2.25). Let p € n(sy, s,, m)
with m > 0 and with p # 0, and suppose that |p(&)] = |pllj~,1; Where
£ e[ —1, 1]. Then, as a consequence of Theorem 3.3,

Zgrom < & < o, (3.10)

As an application, consider any p e n, with p = 0 and p(—1) = p(1) = 0,
so that pen(l, 1, n — 2). Then, from (3.10) and Proposition 3.2 (iv), the
points {in [—1, + 1], with [p(&)| = [[pll{-1, + 1, satisly

cos(n/n)

I<h= cos(m/2n)

(cf. Schur [10, Section 5]).
Concerning the behavior of E
of [8, Proposition 8].

we have the following generalization

§1,82,m>

Theorem 3.4. Let (0, 0,) be fixed in Q [cf. (2.14)], and let

{(51,1': S2.is M)}

be any infinite sequence of ordered triples of nonnegative integers for which

limn; = w0 (=5, + s, +m,i=1), 3.11)
and for which
. Sl i . SZ i
hm — = 6, and lim == = 0,. (3.12)
i M ir M
Then,

A = A®0,, 0,):= lim (E

i— o0

=5/ + w0 =+ A =0 Y (B3)
where .= 0, + 0, and v:= 0, — 0.

)l/ni

S$1,i,82,i,m

Proof. We first introduce the sequence of modified Jacobi polynomials
{J{(x)}~, defined by

Jix) = (x — DFi(x 4 1)2iPZsne2s0(x) / [z—mi(zn")], i>1 (3.14)

/ m;
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We note that these polynomials are, from (2.10), monic for all i = 1. More-
over, from the discussion in Section 2 of their properties the following
inequalities are valid for each i = 1:

1 1
f U 5 = [ Qa0 dx S 2E e BI9)
-1 —1

Next, on expanding the polynomial J,(x) in its Legendre polynomial expan-
sion, it follows that (cf. Szegé [ 11, p. 182])
(m; + D? [*!

“J:'!I[Z—L +1] = > (Ji(x))z dx, i1,
-1

whence, from (3.1),

2 +1
("':1)— f )Y dx, iz1 (3.16)

(Esl,i,szsi.mi)z é ”Jl”[z— 1, +1] é
Thus, from (3.15) and (3.16),

+1 1/2n;
A = lim (E,, )" = lim (f (Ji(x))? dx) .
-1

i o0 i— o0

From Eq. (2.8) and the definition of J,(x) in (3.14), we therefore have

zn' -2 1/2n;
— 1 amf Ot (251,16, 252,0)
A = lim|2°" by e 22 .
i— o0 m;

With the definition of h*# in (2.9) and an application of Stirling’s formula,
we obtain the value of A stated in (3.13). B

As a consequence of the inequalities (3.15) and (3.16), upper and lower
bounds for E, , ,, are
27WL S By m S (04 DL/, (3.17)
where

-1

2n N
L = L(Sla SZa m) = 2m (hs'nZSh ,.Sg))l/Z’
i

ni=s, + s, + m,and where h{;***? is given in (2.9).

Theorem 3.5. Let (04, 0,) and {(sy.;, $5.:, M)}~ be as in Theorem 3.4.
Then, for z € C*\[a, b],

hm ‘Qsl,i,sz,hmi(z)l Ui = A(Hls 02) ) G(Z; 917 62)~ (318)

i— o
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where A(0,, 0,) is defined in (3.13) and where G(z; 0, 0,) is defined in (2.16)
and (2.17). Furthermore, this limit holds uniformly for any compact subset
not containing the interval [a, b].

Proof.  As in Saff and Varga [8], we use a normal families argument.
First, for each i > 1, set”

npi= 8y + Sy +omy, 0y = sy,/n;, 0y,0:= 8,./n;.

Setting p;:= 0, ; + 0, ; and v;:= 0, ; — 0, ;, define g; and b; from (2.12),
and let ¢,(z) be defined from (2.15) for each i = 1. Furthermore, set

A= A0 ;s 92,1')
= 3[04 ) T = ) T A )T = ) Y iz,

and
K:= C*\[a, b] and K,:= C*\[gq;, b;] for i=>1,

and, for each i = 1, set
1
Mi(z) = n— In I Q.\'i,i,xz,i,m;(z) | 3
i

0{z) = @(1)
P Doiz) — 1

v(z):=InA; + Info 2)| + 6, ; In I

Pd{z) — (1)

o~ Doz) — 1]

We remark that both the functions u,(z) and v/(z) for i fixed are harmonic
in K, with the exception of the points z= —1,z= +1,and z=o0. In a
neighborhood of z = 1, we can write

+02,ilnl

ulz) = 61,1’ Injz — 1]+ hl,i(z)
and
v(z) = 0y ;In|z — 1] + fh,i(z)a

where it can be verified that the functions h, (z)and h, (z)are both harmonic
at z = 1 forall i = 1. Furthermore, an analogous representation is true in a
neighborhood of z = —1. Near, z = o0, we have

uflz) = Inlz| + g{z), (3.19)
and

v(z) = In|z| + g{2). (3.20)
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In (3.19) and (3.20), both g,(z) and §,(z) are harmonic at z = oo and

gi(0) = 0 = g{o0).
Next, for each i = 1, set
d{z):= ufz) — v{(2).

Note that d(z) is harmonic in K;, even forz = —1,z = l,and z = 0. As z
tends to [a;, b;] in K;, we note that v(z) tends to In A;, whence

1
limsupd{z) £ —InE, .o, m — DA (3.21)
z-lai, bl ;i o

zeK;

From (3.13) and (3.21) it follows that on any closed subset of K, the harmonic
functions d,(z) are, for i sufficiently large, uniformly bounded from above.
Hence, the d,(z) form a normal family on K. If d(z) denotes a limit function
of this family, then from (3.12) and (3.21) we have d(z) < 0 for all z in K.
However, since dfo0) = g(oc) — §(0) =0, i =1, we conclude that
d(z) =0 in K. Since lim,_, ,, v(z) := v(z) uniformly on any compact subset of

\{—1, 1, oo}, we have lim;_. . u,(z) = v(z) uniformly on a compact set of
K\{—1, 1, oo}. Hence,

104, 4o m(D 1= €D = @ = A0, 0,) - G(z; 0, 05),
as i tends to infinity, uniformly on any compact sct omitting the interval
[a,b]. W

In closing this section, we establish the sharpness of Theorem 2.5 in a
certain limiting sense. Let (0, 6,) € Q and let {(s;;, 55,5, m)}2, be any
infinite sequence of ordered triples of nonnegative integers satisfying

hm n; = 0.0] (”li = Sl‘i + 52’,‘ + m;, i ; 1)3
i~
.Sy .Sy
lim — = 6, and lim == = 0,.
ivoo T ivw M

For the normalized Chebyshev polynomial
T2 =T s, md2) (3.22)

associated with the set n(s, ;, 55, m;) defined in (3.4), we apply inequality
(2.23) of Theorem 2.5 to obtain

1gvz'(z)|”"i = Hcyi”%/—"l,l]G(Z} 51,1'/”1" SZ,i/ni) = ((z; 51,i/"i> Sz,i/ni)«
Letting i tend to infinity yields

lim sup| 7 (2)| 1™ < G(z; 0, 0,).

i— o0
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But, recalling the definition of A in Theorem 3.4, the result of Theorem 3.5
applied to the normalized Chebyshev polynomials gives

lim | 7(2)|"™ = G(z; 04, 0,), (3.23)

i o0

for all z ¢ [a, b], so that the inequality (2.23) of Theorem 2.5 is sharp in this
limiting sense. We also remark that the sequence 7 (z) satisfies the hypothesis
of Corollary 2.6, and, by (3.23), 7 ,(z) diverges for z exterior to the level curve
G(z; 0,, 0,) = 1. Thus, Corollary 2.6 gives the largest possible open set of
convergence to zero.
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