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I. INTRODUCTION

In 1976, G. G. Lorentz [4] introduced the study of certain con-

strained polynomials which are referred to as incomplete polynomials. By

an incomplete polynomial of type 8, 0 < 6§ < 1, we mean any real or

complex polynomial (of any degree) which can be written in the form

INE

a xk , where s = 8n ,s > 0. (1.1)

P(x) = K
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For the most part, research interest has focused upon the behavior,
relative to the interval [0, 17, of such polynomials P(x) for 8 fixed.

For example, on denoting the supremum norm over a set B C € by

lelly:= supllec2)| : 2 € 8],

and letting
I:={P : P is an incomplete polynomial of type 8}, O0<e<l, (1.2)

we have the following fundamental property of incomplete polynomials:

Theorem 1.1. (Kemperman and Lorentz [2], Saff and Varga [67, [7h. it

P € Ig» B # 0, and if £ € [0, 1] is any point for which !P(E)f=}!?”

then £ = 62.

[o,17

‘It is moreover shown in [6] that € > ez, and in [7] that this lower
bound ez is sharp in the sense that if E(P) is the smallest such € in

[0, 17 with [P®)] = HPHEO 17 for each P # 0 in I, then

inf{E(P) : ¥ # 0 in Ie} - 82

In this regard, letting . denote the set of all real polynomials of
degree at most r (with T_gi= {0}), consider the following extremal

problem. Given any pair (s, m) of nonnegative integers, set

o= min{]lx® " - Il :
ss,m‘ min{|/x” (x gm-l(x))dLO,l] - € Tm_l}
(1.3)

s ~

= [x°&" - 8m-1(x))“[0,1]'

Then, the incomplete polynomial

- NI N
To,m(®)i= x (= gm_l(X))/ss’m, (1.4)

which is of type s/n with n:= s + m, is called the constrained Chebyshev

polynomial of degree n, having a constrained zero of order s at x = 0.

Several properties of these constrained Chebyshev polynomials were
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obtained in [7]. In particular, we remarked there that T (x) attains
s,m
its maximum absolute value on L0, 1] in precisely m + 1 points, with

necessarily alternating signs. Hence, if s/(s+m) 2 &, then, by

~

Theorem 1.1, these alternation points must lie in (87, 17, and

B 2 . - .
consequently, (87, 1) contains all nontrivial (i.e., nonzero) zeros of

One purpcse of this note is to obtain (cf. Theorem 3.6) the precise
asymptotic distribution of these zeros for any sequence {7 o (x)}ifl
., =
for which s,/n, = & and n, == (where n = s, mi). Our approach, which
is to study the electrostatics analogue of the problem, also provides a
streamlined method for proving several of the fundamental properties of
ncomplete polynomials.

The outline of this paper is as follows. In Section II, we discuss

2 generalization of the incomplete polynomials of (1.1), and give some

a9

known results. In Section III, we state and prove our main results on

the asymptotic distribution of zeros, and in Section IV, we mention two

related problems.
II. DPOLYNOMIALS VANISHING AT BOTH ENDPOINTS

Note that an incomplete polynomial P(x) in (1.1) has a zero of order
at least &n at the left endpoint of the interval [0, 1]. 1In [3],
Lachance, Saff, and Varga studied the more general possibility of
polynomials vanishing at both endpoints of an interval. For reasons that
will be subsequently clear, we take this interval to be [ -1, 1]. Then,

by an incomplete polynomial of type (31, 92), where 0 = 91; 0= 62, and

0<e + 82 < 1, we mean any real or complex polynomial which can be

1

written in the form
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e

s 8 172
P 2 < k
p(t) = {(t-1) ~(e+l) La akt \
. k=0
where (2'1)
sy = eln, s, = &,n, s17S, > 0.
Furthermore, we set
Ie o = {p:pis an incomplete polynomial of type (el,ezx; (2.2)
1°%2
1
We remark that the collection I, contains polynomials of arbitrari
g..,8
1772

large degree, and is closed under ordinary multiplication, but not under

With the above notation, the generalization of Theorem 1.1, relative

Theorem 2.1. (Lachance, Saff, and Varga 3. 1£fpel, 5.0 P £ 0,
1772
and if € € [-1, 17 is any point for which gp(i){ = &PHF_I 17 then
E ¥ -
a8, ﬁz) =g =58, 52)> 2.3)
where, with g:= 8, + Bs &= 8y - €. & and b are given by
T %
/ 2
a = a8, 52)5= o6 - J(1-cT)y(1-87)
—— - (2.4)

] 2 2
s ez):gf\ —{-,\,/(1‘5 ya-ge -

Note that when 31 = 0 and 82 = 8, we find a = 262 -1, and b =1,

0
b4

that the interval 292 -1<t<1 of (2.3), after the transformation

1T

Theorem 1.1. Unlike Theorem 1.1, however, the sharpness of both endpoints
a and b for the general case of Theorem 2.1 has not been previously

established. In the next section, we prove that the interval in (2.3) i%,

rry

in general, best possible. or this purpose, we




and

the behavior of incomplete polynomials of

type (91, 92), relative to [-1, 17, is to consider the following

Here and throughout, the logarithmic

potential and its corresponding force is assumed. Then, the problem is

to describe the distribution of the continuous charge.

F the electrostatics problem described above, the

ontinuous charge of amount 1 - &

1 -8, lies entirely in the interval




We shall prove Theorem 3.1 by considering the limit of

ing problem for discrete point charges.

ba
gers such that SI\R> + szﬁn) < n and such that
s. (n) s, (n)
lim —— = g, lin ~>— = 8 e+, <1
A L < LU T 4 -
n 12 n Y27 Y1 g2 L 3.2y
n— & i+ ©

Suppose that a charge of amount sl(n)/n is placed at t = 1, and & s
of sz(n)/n is placed at t = -1, and let m(n):= n~51(n}- s, (n) point

charges, each of amount 1/n, be placed on (-1, 1) so that equilibriu.

reached. Let -1 < t < t < < <1d
n,1l n,2 . n,m(n)
these point charges, and set
m(n)
£ (zy:= I {(z -t ,) 3.3)
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where g = ez + 81, § =8, - el. Hence,

. s £ 1 osaari :
Since zvn(z) - 1 as z = = for each n, then necessarily also 20 (z) 3

as

z = =, which implies that the plus sign must be taken for the radie

al g

ven by (3.5).
Finally, as {(z) represents an arbitrary limit function of apy

. 1 3, - 1 .
subsequence of {wn(z)j in €\[a, b], the conclusion (3.4) of

follows. ]

Concerning the limiting distri

=]

bution of the point charges in

Lemma 3.2, we prove

m
Lemma 3.3. Let qm(z) = I (z - T ) be a sequence of pOEynomials,
1 r=1 m,
having all its zeros on [-1, 17, and suppose that
q' ()
11 1 m = U (z). £ c 1 .
RO U(z), for z € 11 (3.1
I @ m

where ¢ (z) is defined in (3.5) with 0 S‘Sl + 62 < 1. For each m, let

- ~ at - - e . 8 3
vm denote the atomic measure (on the Borel sets of [ -1, 1) having mass

1/m each point T % k=1, 2, **+, m. Then, there exists a measure V'
Ly

-
such that Vm ~ V" weakly as m -~ ®, where the support of the measure -

is exactly [a(@x, 82), b(el, @?)3 {(cf. (2.4)), and where
Vi, B = -(1~i . 5(: dt, V(x,8)=la,b]. (3.12)
PRTTRLTR2Y Yy
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gives the potential

fact, it can be shown that

Viz; 8 ez) = in A

1*

maps @*\fe(el,

]

wf = 1. o prove (3.17), one

V - @nb +in G) is harmonic in

(z.6)) 1 () of

slin),szﬁn),m(n}
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