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AN EXTENSION OF THE ENESTROM-KAKEYA THEOREM
AND ITS SHARPNESS*

N. ANDERSON,* E. B. SAFFt AND R. S. VARGAY

Abstract. The classical Enestrém-Kakeya Theorem, for obtaining bounds for the moduli of the zeros of
any polynomial with positive coefficients, is extended to the case of any complex polynomial having no zeros
on the ray [0, +00). It is shown that this extension is sharp in the sense that, given such a complex polynomial
Pn(z) of degree n=1, a sequence of polynomials {Q,,(2)};2; can be found for which the classical
Enestrom-Kakeya Theorem, applied to the products Q.. (2)p,(2), yields, in the limit as i - 00, the maximum
of the moduli of the zeros of p,(z).

A computational algorithm, based on linear programming, is also described whereby nearly “optimal”

multiplying polynomials Q,,(z) can be computed.

1. Introduction. With 7, denoting the set of all complex polynomials of degree
exactly n, and with

(1.1) o ={p.(z)= Y a,zf: a;>0forallj=0,1,: -+, n},
i=0
a useful form of the classical Enestrém-Kakeya Theorem [4], [13], due in fact to

Enestrom [4], is the following: .
THEOREM A. For any p,(z)=Y._, a;z’ in m,, with n =1, define

a; }’ B =B[p,]'= max {aiil}'

aiv1 0=i<n

(1.2) a =a[p,]= min {

O0=i<n
Then, all the zeros of p,(z) lie in the annulus
(1.3) a=z|=8.
Evidently, if
(1.4) p(pn) = max {|z,|: p,(z;) = 0}

denotes the spectral radius of any complex polynomial p,(z) of degree at least unity,
then it follows from (1.3) of Theorem A that

(1.5) Blp.1Zzp(p.) VYp.(z)enw), ¥n=1.

Naturally, it is of interest to know when the inequality of (1.5) is sharp. This was first

studied by Hurwitz [11], and the following result of [1] is a corrected form of Hurwitz’s

original contribution. (A similar result can be analogously obtained for the sharpness of

a[p.] in estimating the minimum of the moduli of the zeros of pn(z); see [1])
THEOREM B. For any p,(z)=Y]_,a;z" in =}, with n =1, define

(1.6) S_'=§[p,,]:={j= L2, ,n+1:Bays1-j—an,—;>0}, wherea_ =0,
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and
1.7) k_=l€[p,,}1=g.c.d.{je.5_‘}.

Then, equality in (1.5) is valid iffk>1. If k> 1, the zeros of pu(z) on |z| =B are all
simple, and are precisely given by

(1.8) Bexp 2mij/k:j=1,2, -, k—1}.
Moreover, p,(z) has the form
(1.9) PaBz)={1+z+2%+ -+ 25N, (25,

where q,, € 5. If m 21, all the zeros of g,.(w) lie in Iwl<1, and Blg.]1=1.

Now, the Enestrém-Kakeya upper bound Blp.lfor p(p,) from (1.5)is certainly an
easy quantity to compute. But, it suffers from two serious deficiencies. First, this upper
bound can be applied only to the rather limited set of polynomials U -; 7. For
example, it cannot be applied as such to the particular polynomial fi(z)=1+27
Second, the upper bound B[ p,] may be a poor estimate of p(p.), and it is not apparent
how this situation can be improved. For example, if f,(z)=1+¢ez+z’where 0<g < i,
we find that B[f,]= ¢, which is a crude upper bound for p(f;) =1, when ¢ is small.

To explain our approach of generalizing the Enestrom-Kakeya Theorem, note inf
the first example above that if Q:(z)=1+2z, then the product Q(z) - fi(z) =
1+z+2%+2%isan element of 3. On applying Theorem A, we obtain that B[O, fi]=
1=p(Q:f1). Moreover, since p(Q, f,) 2 p(f1) from (1.4), then

1=B[Q:filz=p(f),

and this last inequality is sharp since p(f1)=1. Similarly, for the second example above
we find that

BlQ:fol=1+e>p(fa) =1,

this upper bound being a sharper estimate of p(f,) =1 than the classical Enestrom-
Kakeya bound £ ', when ¢ is small.

More generally, for some complex polynomial p,(z) in 7, with n = 1, suppose that
there is a nonnegative integer'm and a multiplier polynomial Q,,(z) in r,, such that
Qn(2) * pu(z) € 70y m. Then, on applying (1.5), we have B[Qmpn]ép(Ompn)ép(pn),
ie.,

(1.10) BLQump.1Zp(pn),

and we call B[Q,.p,] a generalized Enestrom-Kakeya functional for pa(2).

Several questions now arise, the first being to find the precise class of polynomials
Pn(z) for which the generalized Enestrom-Kakeya functional is defined. This is
answered in

PROPOSITION 1. Given p,(z)e T, With n = 1, there exists a nonnegative integer m
and a Qn(z)€m, for which Q,(z) - p.(z)e n}.., iff pn(2) has no zeros on the ray
[0, +00).

The proof of this result will be given in § 3. Because of Proposition 1, it is
convenient then to set

(1.11)  #,={p.(2)e 7' Pa(z) has no zeros on the ray [0, +0)} forn=1.

The next results, aimed at the sharpness of the inequality of (1.10), are our main
results. Their proofs are given in §§ 4 and 5.
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THEOREM 1. Foreach p,(z)€ 7, withn Z 1, there exists a sequence of polynomials
{O,(2)}iZ1, with Qu,(2) € T, and with Qp, (2)  pu(2) € Timan for all i Z 1, such that

(1.12) lim BLQ,.pn]l=p(Pn).

In essence, Theorem 1 gives us that the generalized Enestrom-Kakeya functional is
asymptotically sharp in the sense of (1.12).

Another question that can be asked is to characterize those elements p, € 7, with
n =1 for which equality holds in (1.10) for some polynomial Q,.(z), as opposed to
equality holding in the limit as in (1.12) of Theorem 1. This is answered in

THEOREM 2. Given p,(z) € . with n Z 1, there exists a nonnegative integer m and a
polynomial Qn(z) in my with Qu(z) - pa(z) € o n, SUch that

(1.13) BLQmp.1=p(ps)
iff all of the following hold:

(i) All zeros of pa(z) of modulus p(p,) are simple.

(ii) If {&}}=1 denotes the set of all zeros of p.(z) on the circle |z| = p(pn), then
arg ¢, is a (nonzero) rational multiple of 2, i.e., arg {; = 2mn;/d; (in lowest

(1.14) < terms), where n; and d; are positive integers with 0<n;<d; for all j=
1,2, -,r.

(iii) If D =l.c.m.{d;}j1, there is a positive integer o such that, for every zero { of

L pa(2) with |£| < p(pa); we have P[0, +0).

It is interesting to note that the motivation for Theorems 1 and 2 comes directly
from Theorem B, in the sense that the polynomial p, (Bz) of (1.9) of Theorem B is such
‘that its zeros have a ring-like character; i.e., p,(Bz) has k —1 zeros nearly uniformly
distributed on |z| = 1, while its remaining zeros are distributed as the kth roots of zeros
of q,..(w) (cf. (1.9)). This pattern persists, as we shall see, both in our examples as well as
in the spirit of the proofs of Theorems 1 and 2.

In the next section, we show how linear programming techniques can be used to
determine nearly “optimal” polynomial multipliers Qp (z) of a specific degree such that
Q.(z) - pa(z)e o In addition, the results of some numerical experiments will be
given and discussed. ”

Because of the continuing interest in the classical Enestrom-Kakeya Theorem and
its many generalizations, we have gathered in the References a number of books and
papers which deal in part with this topic, in the hope that such a list may be of value to
the readers.

2. Optimization of the generalized Enestrom-Kakeya functional. Foranyp, € T
set

(2.1) Om(P) ={Qm(2) € Tm: Qu(z) * pulz) € Tmrn} foranym=0.

Note that w.(p.) may be empty for a particular nonnegative integer m, but from
Proposition 1, it follows there is a nonnegative integer mo such that Omo(Pn) # D As is
easily seen, w,(p,) # & implies w4 (p,) # & for every k = 1. Thus, as a consequence
of Proposition 1, there is a least nonnegative integer o(p,) for each p, € #, such that

(2.2) wm(pn) # D, forallmzo(p,).

Note also that w,.(p.) # & implies that w,,.(p,) is a convex subset of 7,,,; i.e., if g1(z) and
q2(2) are in w(p,), then so is ag.(z) +(1 —a)q.(z) forall 0sa =1.
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Given a p, € 77,,, and given that w,,(p,) # &, it is of interest to determine compu-
tationally a nearly “‘optimum” element Q,,(z) in w,(p,), i.e., one whose generalized
Enestrom-Kakeya functional satisfies:

BLO,.p. 1= inf {B[Qpn]: Qm € wm(pa)}.

This can be done by solving a sequence of linear programming subproblems, each of
which consists of finding a so-called feasible solution [17, § 3.5] to a set of linear
inequalities. (Such computational subproblems are usually solved using “Phase I"” of
the simplex method; see [17].) Specifically, for any fixed p,(z) = Y oa;z’ in #, (which
we may take, without loss of generality, to be real), assume wm (pn) # <, and consider
any real Q,.(z) =Y b;z". If we set :

Qm(z) ' pn(z) = PT;\:: ’Yizjs

then Q,, € w,,(p,) iff
(2.3) vi>0 forallj=0,1,- -+, m+n,

min(j;n)

which is a system of linear inequalities in the b;’s, since v; =3, max(0:j—m) Aibj—i, for
/=0,1,- -+, m+n. We then say that (r, Q,.(z)) is a feasible point for w,(p,) (cf.
Luenberger [17, p. 18]) if, in addition to (2.3),

(2.4) YiETyi+r forallj=0,1,--, m+n-1.

By definition, if (7, Q.(z)) is a feasible point for @m(ps), then Q. € w,.(p,) and
B[Qmnp.]=r. Note that Theorem 1 implies that given any 7> p(p,), a feasible point
(7, @ (2)) is guaranteed to exist for m sufficiently large.

On the other hand, fixing m.and given a feasible point (7, Q,,(2)) for @, (p,) we can
proceed (see below) to determine computationally a leas? feasible point (7,,, O,.(2)) in
W (pn), where

(2.5) Tm =inf{r: (1, Q,.(2)) is a feasible point in w,(p,) for some Q,.(z)€ m,,}.

Note that since (B[Q;.p.], Qn(2)) is, by definition, a feasible point for w,,(p,) for each
Qn(2) € Wm(pm), it follows from (2.4) and (2.5) that

(2.6) Tm =i0f{B[Qpp,]: O (z) € wn(pa)}.

Thus, our computational technique finds in essence an “optimal”’ multiplier polynomial
in W (pn), if Wm(pa)# .
The computational experiments were carried out as follows. Given a Da(z) € 7y,
1. Compute a T(°)>p( Pn) from the coefficients of p. using some standard upper
bound for p(p,) (see, e.g., [18]).

2. Form:==1,2,3, -, uselinear programming to attempt to find a feasible point
(+®, Q. (2)). Call the first m for which SUCCEss OCCurs mo.
3. Form=mg, mo+1, -+ find “optimal’” multipliers Q,.(z), for each fixed m, by

using a bisection technique on the variable 7, with (2.3) and (2.4) holding. For example,
given (7@, Q.. (2)), try to find a feasible point for 7:=+¥/2; if this is not possible, try
with 7:=3 - T(o?; otherwise try 7:= /4, etc.

In our computations, the actual testing for feasibility (‘“Phase I'” of the simplex
method) was done using the program in Wilkinson and Reinsch [25, p. 1521

Now, let m; be the sequence of integers and Q,,,, (z) the sequence of polynomials in

A

Theorem 1. By (2.5), we can compute a sequence of polynomials O, satisfying

(27) B(Q"mipn):'rm.v+5ia
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where the ¢, are positive quantities which can be chosen to satisfy lim;.« &; = 0. But,
pn) B(Orn pn) ,B(Qm,pn;)'kei,
since from (2.6), 7, = B(Q,,,p.). Thus, taking limits and using (1.12),

(2.8) lim B(Op.pn)=p(pn),

and hence (ignoring roundeff), the sequence of estimates provided by the compu-
tational algorithm is guaranteed to converge to p(pa).

Example 1. Del(z) = (23 +1) e 7.

For this polynomial, an optimum multiplier polynomial 0Q32(z) was computed. Its
zeros are shown in Fig. 1. The value of 73, (cf. (2.6)) is 1.03626 to 5D. The coefficients y;
in

Os:(2)ps(z) = Z yiz’!

satisfy y;/y;j+1 = 1.03626 for all 0=j=37exceptfor y¢/v27=0. 944348 and y32/y33 =
0.051895. Two of the zeros of Qs are roughly equal to the zeros of z >4+ Rz +R? where
R =1.03626 = 73, (compare (4.7) in the proof of Theorem 1).

Note the circular pattern of the zeros of 01:(2) - pe(z). Thisideais used in the proof
of Theorem 1, although the multiplier polynomials used there are not “‘optimal’’ at each
stage. For example, using the technique of this proof on pe(z) above yields B[Qusps] =
2'/5~1.14870, which is not as good as the result B[O32ps] = 1.03626 obtained from
linear programming.

Example 2. pa(2)=(z ~~/3z+1)(z +(~/—/2)z +He A

For this polynomial (which is not in 777 ), an optimum multiplier polynomial 01+(2)
was computed Its zeros are shown in Fig. 2. Agam note the tendency of the optimal
multiplier O.5(z) to “fill out” the rings (|z| = 1, |z| = 3) on which the zeros of the original
polynomial lie.

FIG. 1. Zeros of ps(z)=(z>+1)*: diamonds; zeros of optimal multiplier of degree 32: crosses (3%
1.03626).
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///\

\ ‘\\ 0 0.5 1
FIG. 2. Zeros of p4(z) = (- V3z+ D2+ (\/5/2)2 +3): diamonds; zeros of optimal multiplier of degree
17: crosses (t,,= 1.00034).

3. Proofs of Proposition 1 and lemmas. We begin with the

Proof of Proposition 1. First, assume that p, (z) is any polynomial which has no zeros
on the ray [0, +00). Without loss of generality, we may assume that p,(z) is monic and
moreover real, for if (z — ) is a factor of p,(z) with ¢ not real, then both ¢ and ¢ are not
contained in [0, +0) and we may consider p,(z) - (z —¢) in place of p,(z)if (z — ) is not
a factor of p.(z). Hence, we can express p,(z), by hypothesis, as

palz) = Hl1 (z+86) Hz (z=r ez —rje™™),
i= j=1

or equivalently
1

(3-1) pa(2)=T1 (z+8) II (2% =2r,; cos 6z +7r7),
; A J ]

i=1 j=1

where §; > 0 (if the first product is not vacuous), and where r; >0 and 0 < §; <= (if the
second product is not vacuous). If the second product is vacuous, then already p,, € 7r,.
If the second product is not vacuous, consider the quadratic factor

2% —2r; cos 6,z +r7, ri>0,0<6;, <.
If 7/2 <6, <, this quadratic factor is an element of 5. If not, this quadratic factor
divides
(z%=2r;cos B,z +r2 ) (27 +2rcos Oz +r})=2"— 2r7 cos (26)z° +r}.
If w/4 < 6, = w/2, this product, when multiplied by (1 + z), is then a polynomial in ws. If
0< 8; = w/4, this process of doubling the argument 6; can be continued, and eventually,

since 8, >0, one obtains in this manner an element in some . As this is true for each
quadratic factor of (3.1), a polynomial multiplier can thus be found such that

Qi (2)  pa(2) € Tisn.
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Conversely, supposmg that p, (z) has a zero on the ray [0, +oC), the same is true for
any product Q,.(z) - p.(z), whence Q,,(z)* p,(2) & 7 psn for any Q,.(z). U

Before proceedmg to the proof of Theorem 1 in § 4, we establish some results
needed in the proof of that theorem.

LemMMA 1. For any positive integer m, let {P(z)}i=1 be any collection of m
polynomials, each having positive coefficients and each being of degree at least unity.
Then,

(3.2) ﬁ[k_fi Pk] éél BIP.).

Proof. The proof will be by induction on m. Obviously, (3.2) is valid for m = 1.
m+1

Assume, then, that (3.2) is true for m, and consider any (m + 1) polynomials {P,(z)}r=71,
each having positive coefficients and degree at least unity. Calling

(3.3) Q(z)= ﬁ P(z)= }E az' and Pn.(z)=Y bz,
K=1 i=0 i

and, noting that rearrangements of the P,’s have no effect in (3.2), we may assume that
v = A. On setting

y+A

Q(z) " Ppy(2)= Z ez,
then from (3.3) and the hypotheses of this lemma, we obtain

k
Cr = Z a,-bk_,->0, fork=0,1,"',‘y+A,
i=0
where a; = 0 for all j >y and where b, =0 for all j > A. With the inductive hypothesis
that B[Q]=Y,_, B[P:], we must show that

(3.4) c/ck1 =B[Q]+B[P.1] forallk=0,1, -, y+A—-1.

This is done by considering the three cases: 0=k <A, A=k <vy,andy=k=y+A-1.
Since the proofs of the cases are similar, we consider for brevity only the case
y=k =y+A —1. In this case, we have

k k+1 vy v
Ck/Ck+1 =( z ajbk—j)/( z a,-bk+1_,-) =( Z aibk_,')/( Z aibk+1_i)
i=0 i=0 j=k—A j=k+1-A

Y Y
=(ak—AbA + X ajbk—i)/( ) ajbk+1—j)
j=K+1-A j=kT1-A

§(ak_,\bA+ 27: ajB[Pm+1]bk+1——j)/( i ajbk+1—i)

j=k+1-A j=k+1-2A
aic-rbr m+1
=s————+B[Pn:+1]=B[Q]+B[Pr:1]= Z BLP:],
A +1-2br

the last inequality making use of the inductive hypothesis B[Q1=Y ;_, B[P«], which
completes the proof. [

Next, we establish a needed polynomial perturbation result.

LEMMA 2. Given any complex number re’® with

(3.5) 0<6<m and r>0,
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and given any sequence {s,},_, of positive integers such that

(3.6) 5,22 VYvzl, and lims, =+,

there exists a sequence of monic polynomials {PSV (z)}o=1 with 15% € my, forall v sufficiently
large such that
(3.7 () (z—re")(z - re”™"%) divides F.’Su(z) forallv=1, and

(i) lim B[P, ]=r.

Proof. First, if we can show that {ﬁsv(z)}‘,’,il satisfies (3.7) for the special case r = 1,

then P, (z/r) will satisfy (3.7) for the general case. Thus, assuming r = 1, we define the
real monic polynomials P, (z) by

(3.8) P (z)=1+z+ 4277 =(z""~1)/(z 1),

whose simple zeros are (i (s,):= exp [27ki/(s,+1)], k=1, 2,---,s, For each v
sufficiently large, choose the distinct zero, say (i, (s.), of P (z) which best approximates
e” in the upper-half complex plane. It is geometrically clear that

(39) '{k;(su)_ew‘gs +1)

for all v sufficiently large, say v = v,. With this choice, define
(z—e“)z—e7")
(2 = G (s,))(z = &, (5,)

so that f’sv(z) is a monic polynomial in s, and (z -z —e ') divides ﬁsy(z). In
essence, the p_air of simple zeros.{kl(s,) and {,(s,) is “‘perturbed” to the two simple
zeros e*' of P, (z). Expressing P; (z) in the form

Vv =,

(3.10) P, (z)=P,(z)

(3.11) PSV(Z)?EO als,; 0)2' Vv,

and writing a; = a;(s,; ) and arg {i,(s,) =t ¢, we-obtain on cross-multiplying in (3.10)
that

(3.12) (z°=2cosyz +1)P, (z) = (22— 2 cos 6z + 1P, (2).

On equating coefficients of z’ on both sides, we have (cf. (3.11))

(3.13) aj-2—2cos ya;_1+a;=2(1-cos 8), i=1,2,--,s,

where ap=1=:q.;. We write:

(3.14) bi=a;—1,  j=-1,0, -, s,

then (3.13) becomes

(3.15) bj-2—2 cos yb;_ + b; = 2(cos ¢ — cos 8), i=-10, -5,

where bo=b_; = 0. The solution of this linear difference equation can be verified to be

b= [cos ¢ —cos 8]{sin ¢ +sin jiy —sin (j + 1)y}
, (1—cos ¢) sin ¢

s _1§j§sm

(3.16)
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so that

_ 3lcos ¢ —cos 8|
“(1—cosy)siny¢’
From our definition in (3.9) of {,(s.) and from (3.5), it then follows that there is a
constant M, dependent only on 6, such that

(3.18) |bj|=M/s, forall-1=j=s,, andforalls, =2.

Recalling (3.14), we see that (3.18) implies that |a;—1|=M/s,, from which
it follows ~that Psv(z)err; for all v sufficiently large, as well as (cf. (3.7 (i)
lim,-e B[P, ]=1. O

4. Proof of Theorem 1. Consider (cf. (1.11)) any pa(2) e, with n=1, and
assume, without loss of generality, that p.(z) is monic, real, and is normalized so
that (cf. (1.4))

(3.17) |b,]

p(p.)=1.
Writing

(.1) pu2)= 11 (=20,
so that |£;| =1 for all i/, we define
(4.2) Piw)= 11 (w20,

where ¢ is any positive integer, and set
(4.3) S;={teZ.: ie[0, +o0)}, 1=i=n,

where Z.. denotes the set of all positive integers. Because p, (z)€ #in, then 1€ S;,and S; is
thus nonempty for all 1 =i = n. Note that if some arg £; = 6; is a rational multiple of ,
i.e., (in lowest terms) 6; = 27y/8 where y and & are positive integers with y/8 <1, then
no multiple of § is in S;, while all ¢ # 0 (mod &) are in S;. In this case, it is evident that

S; = Z+\{m5}3;1.

On the other hand, if some arg{; is not a rational multiple of , then Si=2Z,.
Consequently, since p,(z) is a fixed polynomial in #,, then

@ NS=T={2icZ., and
(4.4) -

() 1=H<b<tz -, with]ligg t; = +00.
We claim now that for each t; € T, there exists a polynomial G;(w) such that

(i) G;(w) is monic and has positive coefficients for allj=1,
(4.5) (i) P,(w) of (4.2) divides G;(w) for all j=1, and
(i) BIG)=n,

where n is the degree of p,(z) in (4.1). To see this, consider from (4.2) any factor

(w—¢0) of Py(w), where ;eT. If % is real, i.e., arg{{ =, then this factor is
just (w+|¢ i]), since T can contain only odd integers in this case, and moreover,
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Bliw +[¢7N]=1L7|= 1.1 ¢ is not real, the reality of the polynomial P, (w) gives us that
the product
(4.6) (W=D = (&)%)

divides P, (w), where we may assume that O<arg ¢y <. Applying Lemma 2 to the
product of (4.6) gives a polynomial ﬁ;,,-(w) having (4.6) as a factor, such that I;,-‘,(w) has
positive coefficients, and such that B[P,;]=2. Thus, multiplying all these Isi'f(w)’s
together, thereby forming G;(w), gives that G;(w) is monic with positive coeflicients.
Applying Lemma 1 to the product defining G;(w) gives B[G;(w)]=n, and by con-
struction, P, (w) of (4.2) divides G;(w), thereby establishing (4.5).

Next, for each R >0, form the product

4.7) Hi(z; R)={R" " +R" 2+ .+ 2""1G,(z"),

for each t;€ T, where G;(w) satisfies (4.5). Because G;(w) has all positive coefficients
from (4.5 (i)), the polynomial H;(z; R) defined in (4.7) similarly has all positive
coefficients, and the Enestrom-Kakeya functional B of (1.2) can be directly applied to it.
Note that the given p, (z) in #, divides H;(z; R) (cf. (4.2) and (4.5 (ii)) for each choice of
R > 0. Now, it can be easily verified that

(4.8) BLH,(z; R)]=max {R: T/R""},

where I'; = B[G;]. On equating R and I;/R""}, i.e., on setting R, :=T'}" we obtain
from (4.8) that

4.9) BIH,(z; R)]=T}""=(B[G))"", VyeT.

To complete the proof of Theorem 1, it thus remains from (4.9) to show that
(4.10) lim (B[G,)"" = 1.

Since p, (z) divides H;(z ; R;) and since, by normalization, p(p,) =1, thenfrom (4.9) and
(4.5 (iii)),

1=p(p.)=B[H;(z; R)]= (B[G;D"" = (n)"",
which yields, by way of (4.4 (ii)), the desired result of (4.10). [

5. Proof of Theorem 2. First, assume that for DPn(z) €7, with n = 1, there exists a
polynomial Q,.(z) in #, with Q,(z) p.(z)€ mh,n such that BlQnp.]=p(p.).
Without loss of generality, we may, as in § 4, normalize to the case p(pn)=1,1i.e.,

BlQmpal=p(p.)=1.
From (1.5), B[Qmp.]1Zp(Qnp.) Zp(p.) =1, so that
BlOumpa]=p(Qumpa)=p(p.) =1.

Hence, from Theorem B, all zeros of Q,,(z) - p,(z) on |z] =1 are necessarily simple,
which establishes the necessity of (1.14 (i)) of Theorem 2. Next, again from Theorem B,
there is a positive integer k> 1 such that the zeros of Q,, (z) * pu(z) on |z|=1 are
precisely of the form

(5.1) exp {2mij/k:j=1,2,--,k—1}.

Evidently, each zero of p,(z) (as well as each zero of Q,.(z)) on |z|=1is a (nonzero)
rational multiple of 277; i.e., if {{;}}-; denotes the set of all zeros of p,(z) on |z] =1, then
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(5.2) . arg {;=2mn;/d; (inlowest terms),

where n; and d, are positive integers with 0<<n; <d, for all j=1,2,- -, r, thereby
establishing the necessity of (1.14 (ii)) of Theorem 2.
Next, again from Theorem B, we have that, for some nonnegative integer /,

(5.3) On(2) pu(z)=(1+z 422+ -+ 25 Ng(25),

where g(w)e 7/, and if | = 1, all zeros of g;(w) liein |w|< 1, and B[g/]= 1. Clearly, the
zeros of p,(z) on [z| =1 must be of the form (5.1), so that, for suitable integers v;,
hy v .
d,"k—’ i=1,2, , F
Thus, if D =l.c.m. {d;}]-1, then D divides k, whence k = oD for some positive integer
o. Now, consider any zero ¢ of p,(z) with |¢|< 1. Evidently, £¥ is a zero of gi(w) from
(5.3). But, since g(w)en;, then /" = ¢°P could not be contained in [0, +00), which
establishes the necessity of (1.14 (iii)).

Conversely, assume that p, € #, with n = 1, that p(p,) = 1, and that (1.14) is valid.
Defining p,-(2) = p.(2)/1;-, (z =) =T1"_{ (z — ;), where again {£;}}-; is the set of
all zeros of p,(z) on |z|= 1, then either j,_,(z) is a nonzero constant, or p,_,(z) is a
polynomial of degree n—~r =1, all of whose zeros lie in |z]< 1. In the former case,
hypothesis (1.14 (iii)) holds vacuously, while in the latter case, hypothesis (1.14 (iii))
implies that g, (W)= Hl':l' (W ~,u,’-‘) is an element of 7, _,. Now, applying Theorem 1
t0 pn—, (W)€ 7., shows that there exists a sequence of polynomials {Q;(W)}2, such
that

(5.4) { (1) QW) p,._, (W) has positive coefficients for all i = 1, and
(ii) lim BLQ: - pu-r1=p(Pn- (W) <1.
To fix matters, choose from this sequence {Q;(W)}2, the polynomial Q(W) of least
degree such that
(i) O(W) - p._,(W) has positive coeficients, and
: {m) BlO - p.—1=1,

and set g(W) = {j(W)ﬁn,,(W).
Since ﬂ;=1 (z ~¢;) divides, from (1.14 (ii)), the polynomial

(5.5

l+z+2%+ - +2""" wherek =D,
it follows that there is a polynomial multiplier, Q,,(z), such that
(5.6) On(z)  palz)={1+z 4 +25 ("),

where g(W), from (5.5), has positive coefficients, B[g]= 1, and all zeros of g(W) lie in
|z| = 1. By this construction, one directly verifies that

(5'7) ﬁ[Omprs]z }‘:p(pn)’

which establishes (1.13). [
We remark that the construction in the proof of the sufficiency of conditions (1.14)

of Theorem 2 gives the multiplier polynomial Q,,(z) of least degree for satisfying (5.7).
To illustrate the result of Theorem 2, consider
Example 3, p3(z)=(1+2)G+2)e #s.
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The zeros of p3(z) are +i, —3, so that p(ps)=1. For the zeros on |z| =1, their
arguments are 27/4 and 6m/4, whence (cf. (1.14 (iii))) D =4. But, since (-3)* ¢
[0, +00) for every positive integer o, hypothesis (1.14 (iii)) fails, and it is not possible to
find a polynomial multiplier Q,,(z) for which (1.13) is valid.

Example 4. py(z)=(1+z°)G+3z +2%)e 4.

The zeros of pa(z) are +i, and 3 ¢**™*, As in the previous case, the zeros on lz]=1
have arguments 27/4 and 67r/4, whence D = 4, and as (G e*tm/3ytog [0, +c0) foro =1,
2,4, -+, we choose o = 1. In this example, the conditions of (1.14) of Theorem 2 are
valid, and with Qs(z)==(1+2)(} -3z + 2)(E-1z2 +2z%), then

. 1 w
Qs(z)ps(z)=(1+2 +22+z3)g2(z4), with go(w) =-2?g+—1g+ w?,

so that

BlOspil=1=p(pa).
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