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1. Introduction

This paper is a continuation of the authors’ investigation (cf. [3, 6-107) of
certain classes of polynomials first introduced by Lorentz [4]. These poly-
nomials, called incomplete polynomials, have several of their first coefficients
equal to zero and are of the following forms:

O(x)=x* i a; x', (L.1)
0

and (more generally)

k
q)=x" Y bx",  0Zp,<p; <..<py, (u integers), (1.2)
i=0 <
where in both forms we assume that s>0. For convenience, we call the
polynomial in (1.2) a lacunary incomplete polynomial. Quite a few recent in-
vestigations have been devoted to the study of incomplete polynomials. We
refer the reader to a survey article of Lorentz [5] which includes an extensive
bibliography.

Our purpose in the present paper is two-fold: (i) to extend several of the
known results concerning incomplete polynomials of the form (1.1) to the more
general class of lacunary incomplete polynomials (1.2), and (ii) to study the
limiting behavior of certain sequences of L -extremal incomplete polynomials,
where L, 1 =g < oo, refers to the g-th power integral norm over [0, 1].

To state our contributions more precisely, we first introduce some needed
notation. We let 7, denote the class of all polynomials of degree at most m
having real coefficients. For each pair (s, k) of nonnegative integers, we denote
by =, the collection of polynomials

TES’k::{XsP(x)ZPEnk}, (13)
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so that m =7, When §>0, a polynomial Qem,, i3 called an incomplete
polynomial of type (s, k).

If I denotes a real (finite or infinite) interval and if h is continuous on I, we
set

1/q
=1 eofeax) . 15g< (14
I
Vil yi=sup{ IR0l x€ T} (15)

One of the basic properties of incomplete polynomials of the form (1.1) is
the following result of the authors [8], which sharpens related work of Lor-
entz. '

Theorem A. Let s and k be positive integers. If Qeng ,,Q=0, and if & is a point
in [0,17 such that [Q()I= Q110,11 then

(=

We remark that the inequality (1.6) is best possible in a certain limiting
sense which is described in detail in [7].

One of our goals in the present paper is to show that the inequality (1.6)
holds, more generally, for any lacunary incomplete polynomial of the form
(1.2); that is, the conclusion of Theorem A does not depend on the precise
degree of the polynomial. Rather, it depends on the order s of the zero at x=0
and on the number of nonzero coefficients of the polynomial. To be specific,
we shall prove (as a special case of Theorem 2.4 in Sect.2) the following.

k
Theorem 1.1. If q(x)(£0) is a polynomial of the form g(x)y=x" (Z bix“">, with
i=0

s>0 and k>0, and if &€[0,1] is such that 1q&Ol=1alr 0,11 then
[s/(s+k)]* <&

One of the most elegant results on the limits of sequences of incomplete
polynomials of the form (1.1) concerns their “forced convergence to zero.”
Stated in the version originally proved by Lorentz [4], we have

Theorem B. Let {Q,(x)} be a’ sequence of incomplete polynomials of respective
types (s, k,), and suppose there exists a number 0, with 0< 0<1, such that

0<s,/(s,+k,), for all n, (1.7)

where s, +k,— o0 as n—> 0. If, moreover, the sequence {0,(x)} is uniformly
bounded on [0,1], then ‘

lim Q,(x)=0, for all 0<x<0? (1.8)

uniformly on closed subsets of [0, 0?).

We remark that the uniform boundedness assumption in Theorem B can be
considerably weakened, and furthermore that the convergence to zero in (1.8)
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holds, in fact, in a region of the complex plane that intersects the nonnegative
real axis in the Interval [0, 0%). These extensions are given in [2] and [7], and
are also discussed in [5].

Here we show that Theorem B holds even for lacunary incomplete poly-
nomials. As g special case of oyur Theorem 2.7 in Sect. 2 we shall deduce

Theorem 1.2, ¢t 149,(x)} be a sequence of polynomigls of the form

k(n)
=5 (3 b, x), (1.9)
i=Q

and suppose there exists a number 0, with 0<0<1, such thar
0§s(n)/(s(n)+k(n)), Jor all n, (1.10)

Where S +k(n)> oo as - 0. If, moreover, the sequence {q,(x)} is uniformly
bounded on [0,17, then

lim ¢, (x)=0, Jor all 0=<x<0? (L.11)
uniformly on closed subsets of 10,062,

theorems for lacunary incomplete polynomials, and also consider weight func-
tions more general than w(x)=x*.

In Sect.3 we study the following extremal problem with respect to the L,-
norm on [0,1]. Let O§M0<,Lt1< <o <ty be k+1 fixed integers, and for each
nonnegative integer n let

k—1
X" xte — .x”J) s 1.12
( j;O “ Lglo, 1]} (112

where the infimum is taken over all (co, ¢y, 0 1)€RY and where 1=g< 0.
We find (cf. Theorem 3.1) the precise limiting behavior (as n—o0) of these

Eann(ﬂo, "'uuk"JJ::inf{

problem (1.12). In particular, we establish that

k—1
fim 400, =2 T (g — (1.13)
n— oo *j=0
where
S=ald=imt{le "t ~h)), o hen, ). (1.14)

The Egq. (1.13) sharpens earlier results of Borosh, Chui, and Smith [1], and
extends a previous result of the authors (cf. [10]) for the case g=o0. We
remark that when q=2, our results give a generalization of the fact that the
classical Laguerre polynomials can be derived as the limit of certain sequences
of Jacobi polynomials (cf, [12, p.103]).
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2. Domination Theorems for Incomplete Polynomials

To establish the generalizations stated in Theorems 1.1 and 1.2, we first prove
that lacunary incomplete polynomials are dominated by “constrained Cheb-
yshev polynomials™ as introduced by the authors in [8]. For further generality,
we allow any weight function w(x) on [0, 17 which satisfies

we C[0,1], w(0)=0, and w(x)>0 for xe(0,1]. (2.1)

In the case of the incomplete polynomials (1.1) or (1.2), this weight function
corresponds to x*.
Throughout this section we shall work exclusively with the L -norm over
[0,1], and hence, for brevity, we write
I -l= [ - HLm[o,ly
Our first main result is
Theorem 2.1. Let k be a positive integer, and let

k—1

Pr(x)=x"— Y cfx' (22)

i
i=0

be the unique extremal polynomial for the problem
k—1 )
inf{ wi(x) (x"~ > cixl)

i=0
where w(x) satisfies (2.1). Set

1 (CosCes ...,ckﬁl)e]R"},

(2.3)

&*:=min {xe(0, 1] [w(x) P*(x)|= lwP*|}. (2.4)

k
Then for any lacunary polynomial of the form p(x)= ) b, x", with p{x) not

i=0

identically a constant times P*(x), there holds

wpl
|w P

Ip(x)] < \P¥(x), forall 0<x<Z* (2.5)

Furthermore, if £€(0,1] satisfies [w(&) p(&)|=lwpll, then
gr<¢. (2.6)

The proof requires two lemmas. In the first we compare a lacunary poly-
nomial with the extremal polynomial of the same lacunary form.

Lemma 2.2. Let {u.}*_, be k+1 integers with 0= pio<py < ... <fh and let p*(x)
k—1

=x"— Y bFxM be the unique extremal polynomial for the problem

i=0
inf{

k-1
w(x) (x“k— .ZO bix”‘) 2 (by, ...,bk;l)ve]Rk}, 27




On Lacunary Incomplete Polynomials 301

where w(x) satisfies (2.1). Set

<5 =min{xe(0, 1t jw(x) p*(x)| = |wp* |}, 2.8)
G =max {xe(0, 17: [w(x) p*(x)) = |w p*|}. (2.9)

k
Then, for any polynomial p(x) of the Jorm p(x)= Y b,x", with p(x) not identi-
i=0

cally a constant times p*(x), there holds

Iwpll
lwp*|

Ip(x) <

[p*()l,  for all xe(O, ESYU(EF, o). (2.10)

Furthermore, for any £e(0,1] for which (W& p(E)=lwpll, there holds
=isgr (211)

Proof. Because span {w(x)x"°, w(x)x", o, w(x)x**"1} is a Haar space on (0,17,
there is a wunique polynomial solution p* of (27), and we let
0=<x,<x,;<..<x,=1 denote k+1 alternation points of wp* in [0,1]. Of
course, since w(0)=0 by (2.1), then Xo>0. Moreover we may assume, without
loss of generality, that x,=¢¥ of (2.8). Now, the k-1 alternation points {x;}¥_,
imply that p*(x) has at least k distinct zeros in (xg, %), while from Descartes’
Rule of Signs, p*(x) has at most (and thus precisely) k zeros on (0, + ).
Moreover, since p*(x) is monic, then sgnp*(x)=1 for all x>x,, which implies
that
sgnp*(x)=(—=1F  for all 0<x<x,. (2.12)
k
Next, for any p(x)= Y b,x"(%£0), choose any constant y >0 such that
i=0

lywpl<lwp*|. (2.13)

Because of (2.13) and (2.1), the polynomial p*(x)—y p(x) necessarily alternates
in sign in the k+1 points {x;}1 5. so that p*(x)—y p(x), by the same reasoning
as above, has precisely k zeros {t,}* , in (0, + o), where

Xo<Ty<T,< ... <7, <X,. (2.14)
Writing
k k
PEX) =yp(x)= ) d;x"=:S(x)[](x—1,), (2.15)
i i=1

i= 0

then § is a polynomial (of degree at most u, —k) which is nonzero for all x> 0.
We claim, in fact, that
sgnS(x)=+1, for all x>0. (2.16)

To see this, we multiply (2.15) by (— 1) w(x) and evaluate at x=x, to obtain
R (1) *
( 1) Y W(XO)P(XO) ( 1) W(xo)p (XO) (217)

+(=1)rt wi(x,)S(x,) H (xo—1)).
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From (2.12), we have (— 1) w(xo) p*(xo)= lw p*||, and hence, by our choice of y
in (2.13), the last term in (2.17) must be negative. But w(xy)>0 and x,<rt; for
all i (cf. (2.14)), so that necessarily S(x,)>0. This proves (2.16).

Now from (2.12), (2.15), and (2.16), we have

(— 1)y p(x)<(—1Fp*(x)=p*(x).  forall 0<x=x,.
Since we can replace p(x) by —p(x) and not change (2.13), then

(=1 Ly p(x)<lp*(x)l, forall 0<x=xo;

whence
lypx)| <lp*(x)l, for all 0<x=x,. (2.18)

On letting 7 increase in (2.13) to , where
Fe=wp*(i/Iwpl, (2.19)

it follows from (2.18) and continuity that
PN EIp*l7,  for all 0=x=x=C5. (2.20)

The same reasoning shows that (2.20) is also valid for x=x, and hence for
x= & (cf. (2.9)). Consequently,

P <Ip* ()7, for all xe[0,EF1VLEE, ©0)- (2.21)

Now, suppose that cquality holds in (2.21) for some (0, E5) U (&, o).
Without loss of generality, we may assume that

p*(X)—7p(X)=0. (2.22)

From the preceding argument, we know that for each y with 0<y<¥, the
polynomial p*(x)—7 p(x) does not vanish for any xe(0,&8]U[&F, 00). Hence,
again letting 7y increase 1o 5, either p*(x)—7p(x) is never zero on
(0, EX)U(EfF, o) or it is identically zero. The assumption (2.22) therefore implies
that p*(x)—7p(x)=0, which contradicts the hypothesis of Lemma2.2. Thus,
strict inequality holds in (2.21) for all xe(0, &%) U(&F, ), which establishes
(2.10).

Finally, if £€(0,1] is such that |w(&)p(&)l=|wpl, a short calculation with
(2.10) directly shows that & cannot lie in (0,&%) or in (&,17 if &f <1; whence
Ex < ESEF, which gives (2.11) of Lemma2.2. [

Our next lemma will enable us to prove Theorem2.1 by means of an
inductive argument. '

Lemma23. Let {i,(1)}* o and {w(2)}i_o be two sets of k+1 integers, where
0< (< p ()< ... < j) for j=1,2. Suppose further that w,(1)> 1, (2) and that
(D} U {Ye o has at most k+2 distinct elements. For j=1,2, let

k-1
p>§< X)= xhel) — b;“ U) xHilh) (2_23)
J ot
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be the unique extremal polynomial for the problem of (2.7), where p,=u,(j), and
where w(x) satisfies (2.1). Set

S =min{xe(0,17: [w(x) p¥ (x)|= |wpFl}, j=1,2. (2.24)
Then,
woon Bl .
[pE(x) < arps ), forall 0<x<&§(2). (2.25)
wp3]l
Moreover,
CHRI=EH). (2.26)

Proof. For j=1,2 we let
0<&i(N=xP<xP<.. <xP<1
be k+1 alternation points of w p¥ in (0,1], and we note that p¥ has precisely k

zeros {y"}i_, in (0,+ o), where x¥ <yP<.. <y?<x¥ Since ecach p¥ is
monic, we therefore have

+1,  for xe[xY, + o0),
sgn p¥(x)= ‘ (2.27)
en py(x) {(—1)'3 for xe(0,x97.
Now choose any y>0 for which
[ywpt] <. (228)

As in the proof of Lemma 2.2, we deduce from (2.28) that pi(x)—yp¥(x) has at
least k distinct zeros {r;}{_, with x{) <7, <x(® for all i. Also, since 1 (1) > 1, (2)
and since y>0, then p¥(x)—yp*(x)— — o0 as x— oo. On the other hand, since
w(xi?) pi(x?)=|wp%| from (2.27), inequality (2.28) implies that

W) p3 () =y wx?) pt () = |w pt | — Iy wp¥ | > 0.
Consequently, there is a point 7, , , >x{? for which

it ) =7 p?(rkf 1)=0.

Thus pf(x)—7pi(x) has at least k+1 distinct zeros in x>x{». But, by hy-
pothesis, this polynomial has at most k+2 nonzero coefficients, and so De-
scartes’ Rule of Signs implies that p¥(x)—y p*(x) has precisely k+ 1 zeros on (0,
+00), namely at the points {r,}}*! with t,>x{ for all i.

Hence we can write

k+1 '
PEX)=ypix)=T(x) [](x~1y), (2.29)
i=1
where T(x) is a polynomial which is nonzero for all x>0. Clearly, since p%(x)
—7pi(x)> —00 as x— o, we must have sgn T(x)=—1 for all x>0. Con-
sequently,

(=Dfypt)<(—1)fp¥(x), for all O<x<1y,
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and so from the sign properties (2.27) and the fact that 7, > x{?, we have

YT ()l <Ip%(x)l,
for all
0 <x<min(xy’, x§)=min(E(1), £%(2)).

On letting y increase to its supremum value, viz. §:=|lwp%|/||wp¥|, in (2.28),
the last inequality becomes

*
= 2 e, for all 0 xSminH(,EQ). (230
Now, if we assume that ¢%(1)<&5(2), then multiplying (2.30) by w(x) and
evaluating at x=¢%(1) gives

wptl
lwp3|

w(EEMN PIEE N <llwpil,

wptl =

the last inequality coming from the definition of £%(2). As the above is absurd,
then &3¥(2) <&%(1), which is the desired inequality of (2.26).

Finally, we observe that (2.30) is valid for all 0=<x<¢&%(2) and, by reasoning
as in the proof of Lemma2.2, strict inequality must hold in (2.30) for all
xe(0,£52). O

We can now give the

Proof of Theorem 2.1. First note that if y;=i for all i=0,1,...,k, then (2.5) and
(2.6) follow directly from (2.10) and (2.11) of Lemma 2.2. Hence we assume that
{u}e o +{i}¥_, For convenience, we set uV:=p,, i=0,1,....k and we re-
cursively define the sets of integers {u{”}*_,, r=2,3,..., as follows.

Set

Jio={i:0=i<k—1and uf), — =2}, r=1,2,.... (2.31)
If J =+ o, set
A(r):=max{i:iel,} (2.32)
and define
o for i=0,1,..., 1
#£r+1)::{ﬂul 3 Or l 3 > 2 (r)7 (2.33)

W1, for i=A(r)+1,... k.
If =g and uy’ >0, set " P:i=pu"—1, i=0,1,...,k Tt is easily seen that if
JoAF g or if uf >0, then 0=<pul  Vapul V< | <uf+Y and moreover the two
sets {u"} o, {u"* P} satisfy the hypotheses of Lemma2.3. Consequently, if
pf(x) and p¥ ,(x) are the extremal polynomials (cf. (2.7)) respectively associated
with {u"}s o and {@" DY and if E%(r) and & (r+1) are the corresponding
extreme points as defined in (2.24), then it follows from Lemma 2.3 that

Gr+1)=E5(0), (2.34)
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and also that

1prl

pE(x)| < TP sl for all 0<x<E5(+1) (2.35)

H r+1
The essential point of the above construction is that if J,+ @, then the
length of the last gap in {u{"}_,, namely u3), ., —u),, is reduced by unity in
passing to {u{"*"}%_,. Obviously, by continuing this procedure, we will arrive,
in say M steps, at the point where Jy, =2 and p{"=0, that is {u™}* |
={i}¥_,. Thus, in the notation of Theorem21 pr(x)=P*(x) and EF(M)=
and, moreover, the inequalities (2.34) and (2.35) imply that

c*=&5(1), : (2.36)
and that

Pi i

H P*fl , forall O<x<¢&* (2.37)

Ipt(x)l <

Finally, if p(x) is any lacunary polynomial of the form p(x Z b;x* =0, then

i=

it follows from Lemma 2.2 that

I()I<‘ wp|

=Twpt] Ipf(x)l,  forall 0<x<&¥(1).

Combining the above inequality with (2.37) gives the desired result (2.5) of
Theorem 2.1 since, from (2.36), we have &*<¢E$(1). Similarly, for any &€(0,1]
for which [w(&) p(&)l=|wpl, we have E¥(1)<¢ from (2.11) of Lemma 2.2, which
combined with (2.36), gives the desired result (2.6). []

We remark that if the weight function w(x) is differentiable at x=&*, then it
is easy to show that strict inequality must hold in (2.6) of Theorem 2.1.

We now give an interesting consequence of Theorem 2.1. For this purpose,
we use the (nonnormahzed) constrained Chebyshev polynomials Q, (x) studied
by the authors in [8]. Namely, for each pair of positive integers (s, k), Q. (x) is
the unique incomplete polynomial of the form

Q,  (x)=x (xk~;:=i: a¥ xi> (2.38)

such that

@_zax)

Igw:m% am%ww%AER%.

(2.39)
Further, following the notation of [8], we let {® denote the least alternation

point on (0,1] for Q ,(x). Then from Theorem A of the introduction (cf. [8,
Prop. 7]), we know that

s ¥ (s, k)
(Hk) <eh, (2.40)
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Applying Theorem 2.1 we can now easily deduce

Theorem 2.4. Suppose that w(x)=g(x)x°, where s>0 is an integer, and where g(x)

is continuous on [0,1], and is positive and nondecreasing on (0,17. Let {u;}s_, be

any set of k+1 integers with O, <py <...<fl, and let p(x) be any poly-
k

nomial of the form p(x)= Y, b;x", with x*p(x) not identically a constant times

i=0
Qs, k(x)' Then

lw(x) p(x)| < "i‘gp “H 10,400, for all 0<x<Zb. (2.41)
Furthermore, if ¢ is any point in (0,1] such that W& p(&)=lwpll, then
2
() <amse (242)

Proof. Let ¢g:=min{xe(0,1]:[x°p(x)|= Ix*p(x)]}. Then from (2.5) and (2.6) of
Theorem 2.1 (with weight function x°) we know that

[%% p(x)| <M 10, (x), forall 0<x< Es k), (2.43)

195l
and that &¢®<g. Hence, on multiplying (2.43) by glx) and using the hy-
pothesis that g(x) is positive and nondecreasing on (0, 1], we have
wp00 <50 ST 0, (0 forall 0<x<h 244
s. k
But

lwpll =lg(x)x*p(x)| Zg(0)|o* plo)l=g(0) [x* p(x),

and so (2.41) follows from (2.44). The inequality (2.42) is an immediate con-
sequence of the inequalities (2.40) and (2.44). [J

We remark that on taking w(x)=x" in Theorem 2.4 we deduce the result of
Theorem 1.1 announced in the introduction. As other immediate consequences
of Theorem 2.4 we have g

Corollary 2.5. For any pair (r,m) of positive integers, there holds
gm<etim g <Eg, (245)

where 8% is the least alternation point for Q (x) in (0,1].

k-1
Corollary 2.6. Let w(x) be as in Theorem2.4, and let p* (x)=x"*— Y. b¥ x" be the
i=0
extremal polynomial for the problem of (2.7). Then all the positive real zeros of
p*(x) are in the interval [s/(s+k)]><x<L.

To state the final result of this section we shall define a function G which
majorizes the constrained Chebyshev polynomials Q, , of (2.38). For cach fixed
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0, with 0<8<1, let

=YW= (w; 0):=

1+92 1—62 (w+w™?
2 2

map the exterior of the circle |w/=1 in the w-plane onto the exterior of the
interval [02,1] in the z-plane, and let w= ¢ (z) denote the inverse of . Then we
set
(1—0)¢(z) +(1+0)
9 —_
G(z: 0 =1z u’HQW i

for all zeC <0717,

(2.46)

and observe that G(0;0)=0, and that 0= G(x;0)<1 for all 0=<x<8> It was
proved by Kemperman and Lorentz [2] and by Saff and Varga [7] that, for
each pair of positive integers (s, k), we have

euersieal [ (=]

s 2
for all zeC~ [(—M) , 1].
s+k

Theorem 2.7. Let {q,(x)} be a sequence of polynomials of the form

(2.47)

Using this fact, we prove

k(n)
0,0=x" (Y. b, o),
i=0

where s(n)>0, k(m)>0 for all n, and where s(n)+k(n)—cc as n— . Suppose
that there exists a constant 0, with 0<8 <1, such that
o< S0 rall n=1,2 (2.48)
< , foraln=12,.... .
“sn)+kn)
If )
limsup ||g,|sm#km =1, (2.49)

n— oo

then
limq,(x)=0, for all 0<x<0?

n— 00

uniformly on closed subsets of [0,60%). Moreover, this convergence is geomemc
in the sense that for any closed set K <[0,0?%) there holds

1
lim sup [max |q, (x)|; xe K]stm+km <max {G(x; 0): xe K} <1, (2.50)

n— oo

Proof. From (2.41) of Theorem 2.4 (with w(x)=x*") we have that

< ol
T

for all 0 < x L gk,

lg, () =
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Using this together with (2.42) and (2.47) gives

9,005,016 [x: ﬁ%ﬂ—))rwm,

s(n)y Y
for all 0§X§ (W) .

and so, from (2.48) and the monotonic properties of G (cf. [7, Lemma4.3]), we

have
12,1 < g, 1 [G(x; 1™ ¥, for all 0=x <62 (2.51)

Hence, on taking the (s(n)-+k(n))th root of (2.51) and using the hypothesis
(2.49), the desired result of (2.50) follows. []

3. An L -Extremal Problem for Incomplete Polynomials
In this section, we investigate the problem of best approximation to x¥ in the
L,-norm on [0,1] by lacunary incomplete polynomials. Our primary result is

Theorem3.1. Let the k-+1 integers g, Hq,....1 be  fixed, with
0o <phy < ... <. For each nonnegative integer n, set

k—1
Ean"(,uO,...,pk,q):zinf{ x" (x”k— > cjx“f) }, (3.1)
j=0 L4[0,1]

where the infimum is taken over all (co,cl,...,ck_l)e]Rk, and where 1<qg =< 0.
Then

lim n** 14 EF%L ﬂ (3.2)
where

ee=e,(@):=1nf{le ™ (" = hO) L 10,4 )" HEM_ 1] (3.3)

Furthermore, if p,(x)=P,(; los s ty-q) s the unique polynomial of the form
k—1
Pa(x)=x"— % &(n)x* such that

j=0
X" () g0, 17=En for all n20, (3.4)

and if p(t) is the unique monic polynomial of degree k such that

He_tf)(t)HLq[O,-f—oo)zslw (3.5)
then

k k-1
lim n* p, (1 —£> =p H (—ny),  for all teR, (3.6)
n

n-> 00

uniformly on each compact set in R.
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Theorem 3.1 considerably sharpens an earlier result due to Borosh, Chui,
and Smith [1, Theorem 3]. They proved that there exist positive constants o;
=01y, > Mg 9)s i=1,2, such that

o, <n**YME <0, forall nz0,

and that the coefficients of the extremal polynomials p,(x) are bounded as a
function of n. The case g=oo of Theorem3.1 was proved by the authors in
[10], but the method used there does not immediately extend to the case of
finite g. What is crucial in our proof is an inequality for Descartes systems due
to Smith [117 (see also [5]).

It is convenient to first state the following simple lemma which, while
generalizing results of [10, Lemma3 and Eq.(2.16)], has the same proofl as

given there. In this statement, C(u;,1) denotes the binomial coefficient (Mf),
i

with the usual convention that C(u;,)=0 if u;<i. Further, we set

1 k—1
e (37)
Lo
Lemma3.2. Let {p,(x)} be any sequence of monic polynomials of the form p,(x)
k—1
=xte— ) c;(n)x*, where each p, has k distinct zeros on (0, + c0), viz,
j=0
0<y,(n)<y,(n)<...<y,(n), and where lim ym=1 for each j=1,2,..., k. Writ-
ing A
p(x)=V,(x) [T (x=y;(n), (3.8)
j=1
where V,(x) is monic of degree w,—k for all n, then
t
lim V, (1 ——) =y, (cf.(3.7) (3.9
n— w n

uniformly on every compact set in t of R. Furthermore,

Clto.0) Cu,0) o C0)
lim V,(x)=——= : : E (3.10)
o DD | g k—1)  Clupk=1) o Cl k=1
x#o xm . xuk

uniformly on each compact set in x of R, where

Di=det[d, ], di=CQt_p.i-1, ©j=12...k

1

We remark that the right side of (3.10) is also a monic polynomial of degree
ty— k.
We now give the

Proof of Theorem3.1. As stated earlier, we may assume that 1<g<oo. It is
known (cf. [13, p.64]) that the extremal polynomials p,(x) of (3.4), and p(r) of
(3.5) exist and are unique.
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Now (3.4) implies that
1
E¢={x"p,(x)?dx, forall n=0.
0
On making the change of variables x=1—t/n, te[0,n], the above equation
becomes
t\|4
(12
n

for all n>1.

phet B = | (1 —5)” n at, (3.11)
n

0

Next, we observe that p,(x) has, by Descartes’ Rule of Signs, at most k zeros
on (0, + o), counting multiplicities, while on the other hand, from the ortho-
gonal-like characterization of best weighted (the weight function being x")
L,[0,1]-approximation to x** (cf. [13, p.64]), it follows that p,(x) has at least
(and thus precisely) k simple zeros in (0,1). Denoting these zeros of p,(x) by

0<X,(m<x,(m)<...<x (<1,

we can write
k
Pa(x)=5,(x) ﬂl (x—%;(n), (3.12)
j=
where S,(x) is a monic polynomial of degree w,—k which has no zeros on
(0, +0).
Next, for any polynomial T(x) of the form
T(x)=x"*<— Z €;xM, (3.13)
it follows from the definition of E, in (3.1) that (cf. (3.11))

n g q
nktEI< | (1—£) n"T(l—t)’ dt.
> n

n
Since (1—t/n)""<e™" for all te[0,n], we therefore have

kq+1 Eq<j‘e—tq

n T (1—-)\ dt. (3.14)

Our immediate goal is to construct specific polynomials of the form (3.13)
whose zeros are related to those of p(t). As before, the characterization of best
weighted (the weight function now being e~ L, [0, + oo)-approximation to t*
by elements in 7,_,, gives us that the polynomial j(t) of (3.5) has precisely k
simple zeros in (0, +oo). Calling these zeros (which are independent of n)
0<i,<...<f,, then we can express j(t) as

o=l

“Z

(3.15)

2



On Lacunary Incomplete Polynomials 311

Setting
t
x,(n):= —;l‘-, i=1,2,....k, forall nz21, (3.16)

then all the x,(n)’s are positive for every n>t,. Since the functions {x“]}"
form a Haar system on (0, + co), there exists, for each n>t,, a unique monic
polynomial T,(x) of the form (3.13) which vanishes in each of the points x;(n),
1<igk. On writing

=U,(x) ﬁ (x—x,(n)), (3.17)

where U,(x) is monic of degree p,—k, and on substituting T,(x) in (3.14), we
deduce from (3.15) and (3.16) that

n
nkq+1 Ezéjegtq
[

U, (1—%),‘1@({)1%@ for all n>7,. (3.18)

Observe that, since the numbers £, of (3.15) are independent of n, then the
x;(n) of (3.16) tend to unity as n— oo, for each i=1,2,...,k Consequently,
Lemma3.2 may be applied to the partlcular sequence T(x) of (3.17). On
choosing [0,1] to be the compact set in x in (3.10), and on applying the
Lebesgue Dominated Convergence Theorem to the integral of (3.18), it follows
from (3.9) that

lim n*4+ ! E2< je*’qlp(t)qut—yqsk, (3.19)

h— oo

the last equality following from (3.5).
Returning to the representation for p,(x) in (3.12), the numbers X;(n) then
generate the numbers ¢;(n), where

f)i=n(l—%m), forall 1=j<k forall nz1. (3.20)

We claim that there exists a positive constant M such that
lt,m=M, forall 1sjsk  forall nzl. (3.21)
To see this, we have from (3.11), (3.12), and (3.20) that

n £\ha
o 27
n o n
for all n>1.
Furthermore, from (3.19), there is an n,>1 such that n**' E{<y%e{+1 for all

n=n,; whence
j(1—5>"q s, (1—4) Hlt—t (e de
0 n

Sylel+1=:4, forall n=ng.

f[ —medn, (322)
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On reducing the interval of integration to 0=t<1, and on bounding below the
first term of the integrand, this implies that

g,

. 1y _ .
Since (1 __7) e~ as n— oo, it then follows that there is a constant 4’ such
n

s, (1—%)

k
Next, we wish to compare the polynomial p,(x)= H (x —X;(n)) with the
specific monic polynomial i=

k
ﬂ [t—t,(m1dt< A

that
q

k
[t~ ()de= 4, forall nz1. (3.23)

ST,

by (n) xk (3.24)

M:c-

k
Ho(x):=x* [ (x— %) =

j=1 i=0

Notice that the exponents A;:=p,—k+i, i=0,1,...,k of the terms in H,(x)
satisfy 2> p,, for all 0<i<k, where the y; are the correspondmg exponents in
p,(x). Furthermore, both p,(x) and H,(x) are monic of degree i, and both
vanish in the k points 0<%, (n)< ... <X,(n)<1. Hence, as the functions {x7}
form a Descartes system on (0, + oo), Theorem 1 of Smith [11] implies that

H,(9|<5,(x), for all x=0.

k
On dividing out the common factor [](x—x;(n)) from H,(x) and p,(x), this
implies that J=1
xtek LIS (x)l,  forall x=0. (3.25)

Thus, for te[0,1], we have

e —k i —k
R
n n \ n

and so the integral in (3.23) is bounded below by

b

{\u-kgl K
(1_7> | THe-umpdisa,  forall nz1.
n 0 j=

This, in turn, implies that there exists a constant A" for which

1k ’
[ TTlt—tmede=a”,  forall nzl. (3.26)
0 j=1

By familiar arguments for sequences of polynomials of fixed degree, (3.26)
k

readily implies that the sequence H (t—t;(n) is uniformly bounded on
=1

any compact set in t of R, and that the t(n) are uniformly bounded, as
claimed in (3.21).
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Now, let p(¢) be any limit polynomial derived by taking a suitable sub-
k

k
sequence, say {n (t—t, n))} , of {H(t—tj(n))} . For this subsequence
1 i=1 n=1

Jj=1

s, (1")

As the boundeness of the t,(n) in (3.21) implies that all the X,(n) of (3.20)
approach unity as n— co, we can apply (3.9) of Lemma 3.2 to deduce that

we have, from (3. 52 that

i £ \mid q k
n'i“”] Ed :j (1——) H ]t—t (n)ledt. (3.27)
i n, i

0

lim S, (1 ff) ¥, (3.28)
i—w ”L

uniformly on any compact set in ¢t of IR. Thus, on taking limits in (3.27), we
have
lim nf4* ! ES =yt fe"‘? Ip(O)de<y7el, (3.29)

i— oo

the last inequality following from (3.19). Therefore, from the definition of ¢, in
(3.5) and the uniqueness of the associated extremal polynomial p(1), it follows
that p(t)=p(f) and, consequently, that

LN 2 U nl’ R )
lim n/?* EL =y%el.

But, as p(t) was any limit polynomial, then

k

lim [T (t—t,(n)=p), (3.30)

n—ow j=1
uniformly on any compact set in ¢ of IR, and

lim n*4 ! E4=14¢d, ’ (3.31)
Recalling the definition of y in (3.7), the last equation gives the desired result
(3.2) of Theorem 3.1. .

Finally, using (3.30), (3.28), and the representation (3.12), the conclusion
(3.6) of Theorem 3.1 follows. [

As a consequence of our proof, we mention the following immediate result
concerning the zeros of the p,(x) of Theorem3.1.

Corollary 3.3. Each of the k positive real zeros of the extremal polynomials p,(x)
of (3.4) tend to unity, as n— oo, with precise rate O(1/n).

We leave to the reader the statements of some further consequences which
generalize to finite ¢ the results of Corollaries 2.2 and 2.3 of [10] for the case ¢
=00,
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