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On the LU Factorization of M-Matrices*

Richard S. Varga** and Da-Yong Cai***
Institute for Computational Mathematics, Kent State University, Kent, Ohio 44242, USA

Summary. In this paper, we give in Theorem 1 a characterization, based on
graph theory, of when an M-matrix 4 admits an LU factorization into M-
matrices, where L is a nonsingular lower triangular M-matrix and U is an
upper triangular M-matrix. This result generalizes earlier factorization re-
sults of Fiedler and Ptak (1962) and Kuo (1977). As a consequence of
Theorem 1, we show in Theorem 3 that the condition x” 4=07 for some
x>0, for an M-matrix A4, is both necessary and sufficient for PAP” to
admit such an LU factorization for every nxn permutation matrix P. This
latter result extends recent work of Funderlic and Plemmons (1981). Fi-
nally, Theorem 1 is extended in Theorem 5 to give a characterization,
similarly based on graph theory, of when an M-matrix A admits an LU
factorization into M-matrices.

Subject Classifications: AMS(MOS) 15 A 23; CR: 5.14.

1. Introduction

An nxn M-matrix 4=[a, ;] is said to admit an LU factorization into n xn M-
matrices if A can be expressed as

A=LU, (1.1)

where L:=[/, ;] is an nxn lower triangular M-matrix (ie., /;; =0, /; ;<0 for
all i>j and /; ;=0 for all j>i, where 1=i,j<n), and where U:=[u, ;] is an
nx n upper triangular M-matrix (i.e., u; ;=20, u; ;<0 for all j>i and u; ;=0 for all
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i>j, where 1 =i, j<n). A well-known result of Fiedler and Ptak in 1962 (cf. [4,
Theorems 3.1 and 3.3]) gives that any nonsingular M-matrix admits such an
LU factorization (1.1) into M-matrices, with L and U both nonsingular.

There has been revived interest in this factorization question. In 1977,
Kuo [7] extended this earlier result of Fiedler and Ptak by showing that any
n x n irreducible M-matrix (singular or not) admits an LU factorization (1.1) into
M-matrices, with, say, L nonsingular. (The analogous result is also true with U
nonsingular since an M-matrix 4 admits an LU factorization in M-matrices
with L nonsingular iff A7 admits an LU factorization into M-matrices with U
nonsingular). Thus, the above results of Fiedler and Ptak, and Kuo, can be
seen as contributing to the following:

Problem 1. Characterize those M-matrices which Admit an LU Factorization
into M-matrices with L Nonsingular

Obviously, to completely settle Problem 1, it remains only to determine which
singular and reducible M-matrices admit an LU factorization into M-matrices
with L nonsingular. First of all, not every singular and reducible M-matrix has
such a factorization, as an examination of the particular matrix

w2

directly shows. On the other hand, because of connections with compartmental
problems (cf. [5]). Funderlic and Plemmons [6] have recently extended Kuo’s
result by showing that if an n xn M-matrix 4 satisfies

x’4=0" for some x >0, (1.3)

then A admits an LU factorization into M-matrices with nonsingular L. (Here,
we use the notation that X:=[x,,...,x,]" =0 or x>0 means respectively that
x;=20 or x;>0 for all Isi=n.) This result, however, does not completely settle
Problem 1. To see this, consider the singular and reducible M-matrix 4,,

where P A I U
2'“[0 b]_[o 1]'[0 0]" a4

which has a trivial LU factorization into M-matrices with nonsingular L, as
shown above. It is immediate that (1.3) fails for 4,.

Condition (1.3) does, however, carry further implications. As was observed
in [6], for any nx n permutation P, it is evident that if (1.3) holds, then

z"(PAP")=0", where z:=Px>0.

In other words, if 2, denotes the collection of all nxn permutation matrices,
then the nxn M-matrix A satisfies (1.3) iff PAP” satisfies (1.3) for all Pe?,.
Consequently, the result of Funderlic and Plemmons [6] gives that (1.3) is a
sufficient condition that PAPT admits an LU factorization into M-matrices
with nonsingular L for every Pe%,. One of our main results, stated as Theo-
rem 3 below, is that (1.3) is necessary as well.
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To state our main results, additional notation is required. Given any nxn
complex matrix A=[ag; 1. let G,(A) denote its directed graph (cf. [9, p. 19]) on
n given distinct vertices v,, v,,....v,, where a; ;#0 is interpreted as an arc
from v; to v;. More generally, a path from vertex v; to vertex v; is a sequence of
arcs,

{ay 1, }/_y with /21, +0, and with k, =ik, ,=j. (L5

Next, with (ny:={1,2,....n}, let a={0;, a,, ..., } be a nonempty subset of
{n) where, for convenience, we order the elements of o as
<o, <o, <...<o,<n. Then, A[«] denotes the induced principal submatrix of
A determined by o, ie.,

Alo]=[a;;]. where i,jeo. (1.6)

We shall say that « is a proper subset of (n if Do (n).

With the above notation, we state our main results, and their corollaries.
Proofs of these basic assertions will be given in § 3. Our first result, Theorem 1.
gives a solution to Problem 1.

Theorem 1. Let A be an n xn M-matrix. Then, the Jollowing are equivalent :

i) A admits an LU factorization into M-matrices with nonsingular L;

ii) for every proper subset a={0ty,0.....00} of {n) for which A[o] is
singular and irreducible, there is no path in the directed graph G (A) of A from
vertex v, to vertex v, for any t>uw, and any 1<j<k.

We remark that the previous results of Fiedler and Ptak [4] and Kuo [7],
on factoring M-matrices, are both special cases of Theorem 1. To see this, it is
impossible to find (cf. Lemma 3 of §2) a proper subset o of {n) for which A[«]
is singular and irreducible if 4 is either a nonsingular M-matrix or an irreduc-
ible singular M-matrix. Thus, it) of Theorem 1 holds vacuously, whence A
admits such a factorization.

As an immediate consequence of Theorem 1, we have

Corollary 2. Let A be an nxn M-matrix, and let o={0y,0,,...,0,} be any
proper subset of {n) for which A[«] is singular and irreducible. Then

a,,=0 forall t>0, and all pes (1.7)

is a necessary condition that A admits an LU factorization into M-matrices with
nonsingular L.

To illustrate Theorem 1, consider the matrix A . of (1.2), which is a singular
reducible M-matrix. On choosing a={1}, then A,[o]=[0] is evidently sin-
gular. As we define all 1x1 matrices in this paper to be irreducible, then
A,[o] is also irreducible. Since the directed graph G,(4,) of A, from (1.2) has
a path from vertex v, to vertex vy, this shows that ii) of Theorem 1 fails. As
we have seen, 4, does not admit an LU factorization into M-matrices with
nonsingular L.
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As a less trivial example, consider the singular reducible M-matrix

6 —1 0O 0] 0 0]
-1 6| 0 —1 0 —1
0 0 1 —1 0 0
A, = } 1.
3 0 0]—1 1 0 0 (18)
o ol 0o o] 6 -1
L—1 o] 0 0]-1 6 |

On choosing «={3. 4}, then

RN

is singular and irreducible. On examining the directed graph G4(4;), we see
that there is a path from v, to v,, so that, from Theorem 2, A does not admit
an LU factorization into M-matrices with nonsingular L. The point of this
example is that (1.7) of Corollary 2 is satisfied for 45, which shows that (1.7) of
Corollary 2 is not sufficient in general for 4 to admit an LU factorization into
M-matrices with nonsingular L.

Our next result gives equivalent characterization of (1.3) for M-matrices.

Theorem 3. Let A be an n xn M-matrix. Then, the following are equivalent:
i) A satisfies (1.3);
ii) PAPT admits an LU factorization into M-matrices with nonsingular L
for each Pe2,.
iii) for every proper subset o={o;, d,, .. o) of <ny for which A[o] is
singular and irreducible, then a, ,=0 for all té¢o and all pea.

To illustrate the result of Theorem 3, consider the matrix 45 of (1.8). Now,
a={3,4} is the only proper subset of (n) for which A;[«] is singular and
irreducible, and as iii) of Theorem 3 fails for A;[o], then A4, does not satisfy
(1.3). On the other hand, note that the transpose, A%, of A, does, by inspection,
satisfy iii ) of Theorem 3, so that A} satisfies (1.3). It is evident that Theorem 3
can be used to give a necessary- and sufficient condition for an nxn M-matrix
A to be such that either 4 or A7 satisfies (1.3).

On reconsidering the matrix A, of (1.2), we know that 4, does not admit
an LU factorization into M-matrices with nonsingular L, while for the per-

. .= JO 1 PN )
mutation matrix P::—[1 0]’ we see from (1.4) that PA,P"=A, does admit

such a factorization. This suggests the following decomposition of %,. For a
given n x n M-matrix A, set

P%(A):={Pe?,: PAP" admits an LU factorization

into M-matrices with nonsingular L}, (19)

and set
PHA): =P PHA). (1.10)
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In the case of 4, of (1.2), then 2%(4,)={P}, while PYA,)={I}. Obviously,
Theorem 3 asserts that

7 4)=2,

n

(so that 2(4)= ) iff 4 satisfies (1.3). (1.11)

Moreover, Kuo [7] has shown that Z(A) is never empty for any M-matrix A.
For a constructive proof of this, simply apply Theorem 1 to the reduced
normal form (cf. (2.15)) of any nxn M-matrix.

Next, given any nxn M-matrix A, we know from the previous discussion
that 2%(4)+ &, and it is of interest to determine the cardinality |2%(A)| of
Z5(A) (ie., the exact number of its clements). Now, the general determination
of |Z8(4)| for a given nxn singular and reducible M-matrix is a rather
complicated combinatorial problem, but to give the flavor of this problem, we
include the special combinatorial result of Theorem 4, whose proof will also
given in § 3.

Theorem 4. Let A be an nxn singular and reducible M-matrix such that there is
a Pe?, for which (cf. (2.15))

~ A A

PAPTzA::[ 1 J’Z], (1.12)
O A2,2

where A, | is an m, xm, nonsingular irreducible M-matrix, where A, , is an m,

xmy singular irreducible M-matrix, and where A, ,%0. Then,

IZHA=my(n=1), and | 2(A)|=m, (n—1)!. (1.13)

As an application of Theorem 4, it can be verified that the matrix A, of
(1.8) satisfies the hypotheses of Theorem 4 with n=6, m;=4, and m,=2. As
such, it follows from (1.13) that

|Z5(A3)|=240, and |2(4,)|=480.

_ We remark that if the roles of A, and A, , in (1.12) are interchanged, i.e.,
Ay is an m; xm, singular irreducible M-matrix and Ay, is an m,xm,
nonsingular irreducible M-matrix, then we have, in contrast with (1.13), that

|25(A)|=n!, and |2b(4)|=0. (1.14)

As previously noted, the LU factorization (1.1) of an M-matrix 4 where the
upper-triangular matrix U is now nonsingular (instead of L) amounts simply to
an LU factorization of A7 with nonsingular L. Thus, since the directed graph
G, (A7) of A" can be immediately obtained by simply reversing the direction of
all arcs in the directed graph of G,(A4), it is evident that Theorem 1 can be used
to give a necessary and sufficient condition for an nxn M-matrix 4 to be such
that 4 admits an LU factorization into M-matrices with either nonsingular L
or with nonsingular U. To illustrate this, consider the singular reducible M-
matrix

I -1 -1 -1
0 0 -1 0
A,= 0 0 ) 0 (1.15)
-1
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On choosing a={2}. so that A,[o]=[0] is singular and irreducible, we see
from the directed graph G4(4,) that there is a path from vertex v, to Vertex v,
as well as a path from vertex v, to vertex vs. Consequently, 4 does not admit
an LU factorization into M-matrices with either nonsingular L or with non-
singular U.

The example of the matrix A, in (1.15) leaves open the question of whether
A, admits an LU factorization into M-matrices, without regard to the singu-
larity or nonsingularity of either L or U. As we shall see, the answer to this
question is no, and we are thus lead to the more general problem of

Problem 2. Characterize those M-matrices which Admit an LU Factorization
into M-matrices

Obviously, as in the case of Problem 1, it remains only to determine which
singular and reducible M-matrices admit an LU factorization into M-matrices.
As an easy extension of Theorem 1, a solution to Problem 2 is stated below in
Theorem 5.

Theorem 5. Let A be an nxn M-matrix. Then, the following are equivalent:

i) A admits an LU factorization into M-matrices;

ii) for every proper subset g={0, .00y} Of <MD for which A[o] is
singular and irreducible, there do not simultaneously exist paths in the directed
graph G,(A) of A from vertex v, to vertex v,, (for some t>a, and some 1<j<k),
and from vertex v,, to vertex vg (for some 1Zi<k and some s>, ).

From the discussion following the definition of the matrix A, in (1.15), it is
evident that A, does not satisfy ii) of Theorem 5. so that A, does not admit
an LU factorization into M-matrices. To further illustrate Theorem 5, consider
the matrix

00 0 0
-1 0 -2 =2

4=l 0 o of (1.16)
-1 0 =3 0

which is a singular reducible M-matrix. Now o;:={i}, i=1,2,3,4 are the only
proper subsets of (4) for which As[o] is a singular irreducible M-matrix. As
ii) of Theorem 5 is valid for each o, i=1,2,3.4, then A5 admits an LU
factorization into M-matrices. Such an LU factorization is explicitly given in

o0 o0 o011 O 0O O
11 o ofloo -2 =2
A.= : . 1.17
511 0 0 0f}0 O 1 0 (1.17)
10 -3 14too0o o O

As a final remark, we can, for any nxn M-matrix 4, analogously set (cf.
(1.9)-(1.10))
P5(A):={Pe?,: PAP” admits an LU factorization

into M-matrices}, (1.18)
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and
PA): =D\ PE(A). (1.19)

By definition, we have in general that PE(A) 2 PE(A). We remark, for the
special structure of A in (1.12) in Theorem 4, that PS(A)=2,. and thus
ZAA)225A).

2. Preliminaries

In this section. we establish a number of needed lemmas before proceeding to
the proofs of Theorems 1, 3, 4 and 5 in §3.

Lemma 1. Assume that the three nxn matrices A=[qg; ;1. L, and U satisfy A
=LU, where L is lower triangular and where U is upper triangular. If Lis
nonsingular, then a, ;=0 implies a; =0 for all 1<j<n, while if U is non-
singular, then a, ; =0 implies a,; ;=0 forall 1<j<n.

Proof. Immediate! §

Our first interest is in Problem 1, and we now examine carefully the
application of Gaussian elimination, by successive columns, to an nxn M-
matrix 4=[q; ;] to see if A admits an LU factorization into M-matrices with
nonsingular L. First, suppose ay,y=0. If some a; , <0 for 1<j<n, this factor-
ization of A4 fails from Lemma 1. Otherwise, all entries in the first column of 4
are zero so that 4 has the form

0) (0) (0)
4y | 4y, ... ay,
(1) (1) (0) )T
. 0 Ay - ay, | a4V |a 21
=l O] . —|. (2.1)
: : : 0 | 4,
(1) (1)
0 ayy ... a)

where A=A4,:= [a{)]. and where

i,

/Il::[ag.’l}, where 1<) /<n, with a(j}}::agf’}::aj,/. (2.2)

Thus, if @y, =0 and if the factorization does not fail, then 4 has the form (2.1),
so that, from the hypothesis that A=A 1 1s an M-matrix, we see that 4, is also
an M-matrix.

Continuing, suppose a, ; +0, so that a; ;>0 as 4 is an M-matrix. We can
add (—a; /a, ,) lay1.a;5,....a;,]" to the j-th row of A4, thereby forming
[0,a]. .., as)77, where in general
SN Ko W ;
="y~ Ta5s 25j,4Zn. (2.3)

1,1
Thus, if a, ; +0, we can perform Gaussian elimination on the first column of
A, and we obtain the matrix A, of (2.1), where the entries of the (n—=1)x(n—1)
matrix A, in (22) are given now by (2.3). Note that we can express A, as
L' A,, where
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1
© 140 1
o O | irap+0 and =1
Ly:=|ash/asy O otherwise 24
a®/a® 0 ... 01

In either case, it is evident that L, is a unit lower triangular M-matrix.

By a result of Ky Fan [3, Lemma 1], whom we are honoring, the
(n—1) x (n—1) matrix 4, of (2.1) is itself an M-matrix, so that the process can
be continued. Specifically, if a a', =0, Lemma 1 gives us that either a{*, =0 for all
2<j<n, or the factorization fails at this step. If all, #0 (so that ay),>0 since
A, is an M-matrix), Gaussian elimination can be performed on the second
column of 4,. It is then clear that, if the M-matrix A admits an LU factori-
sation into M-matrices with nonsingular L, the matrix A is, after k steps
(1 £k <n) of Gaussian elimination, given by

at®y V/av//a
e @3)
0 Ay
where if 4,:=[al,] where k<j, /=n, then recursively,
al,=af, v forall k=j. /=n if aft; V' =0; 26)
qle—1) gle—1) '
aﬁ-’f}=—ﬂak—_%f++ayj;1>, for all k<j, /<n ifal; "#0.
k,k
In addition, we have that
A=L A, k=12...n—1 2.7)
where for k>1,
—ka 1 O _1
T
Lo aik{ll’)k./aik’; ! 1 0 if a*, V+0, and 25)
K 0 ‘ L,=1_ otherwise; '
0 k n
\' a® Va0 .0 1]

here, I, _; denotes the (k—1)x (k—1) identity matrix. If the procedure does not
fail at any step. we see from (2.7) that

A=(L,-L,...L, ) A, ;=L-U. (2.9)

where L:=L,-L,... L, ., by construction, is a unit lower triangular M-matrix.
and U:=A4, , is. from the sign properties of (2.6), an upper triangular M-
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matrix. This gives us the desired LU factorization of 4 into M-matrices with
nonsingular L.
We now look at the graph-theoretic implications of the above procedure.

Lemma 2. Let A=[a,; ;] be an nxn M-matrix which admits an LU factorization
into M-matrices with nonsingular L. Then, 1) there is a path (cf. (1.5) from
vertex v, to vertex v, in the directed graph G,(A) for A for which r+s and
min {r;s} >k, iff ii) there is an associated path from vertex v, to vertex vy
in the directed graph Gn_k(/lk) of the matrix A,, arising in the k-th step of
Gaussian elimination applied to A (cf. (2.5), where the vertices for ank(flk) are
defined to be v, 1, U 25 -5 U

Proof. It suffices to consider only the case k=1, as the other cases follow
recursively.

i) = ii). Let the given path be determined from the sequence @, Y_i

with a, ., +0, where k,=r and k, ,=s. Suppose that there are two
successive terms, say al’] and a\® in this sequence, with t=q. By definition,
al®) +0, so that a®, >0 from Lemma L. Consider the display in (2.3). Since we
are dealing with M-matrices, al?) <0 for any j=/, so that for any pair (j, £) with
1<j,/<n with j+¢, both terms on the right of the display in (2.3) are of the
same sign, i.e., they are both nonpositive. In particular, we also see from (2.3) that
—a) af,

ay

all)= +a% <0, (2.10)
since the first term on the right is negative. Similarly, a\”, ., <0 with k, +1
and k,, ,+1 implies from (23) that a, ,,<0. Hence, the sequence
{a®, . }_, generates a new sequence (@D, Yooy with ky=r and kj, =s,
where /' </ if some k,= 1, and /' =/ otherwise. This new sequence evidently can
be interpreted as a path from vertex v, to v, in the directed graph Gn71(1‘11) for

A, on the vertices vy, U3, .-+ U which gives ii) for the case k=1.

ii)=1). Suppose a!’)+0 with min (¢; g)=2, so that there is an arc joining v, to
v, in G, (4 ,)- Assuming first that a®, >0, it follows from (2.10) that there is
an arc or path joining v, to v, in G,(A). If a?, =0, then A has the form (2.1),
and there is an arc joining v, to v, in G,(4). B

As an immediate consequence of Lemma 2, based on the well-known (cf.
[9, p. 20]) equivalence between irreducible matrices and strongly connected
directed graphs, we have the

Corollary. Let A=[a; ;] be an nxn M-matrix which admits an LU factorization
into M-matrices with nonsingular L. If A is irreducible, then so is each submatrix
A, (cf. (2.5)), for k=1.2,....n— L.

With the notation of (1.6), we next establish

Lemma 3. Let A=[a; ;] be an nxn M-matrix. Then, a proper subset o
= {0y, 0p,....04) Of {n) exists such that A[o] is singular iff A is a singular
reducible M-matrix. Moreover, if o is a proper subset of {(n) such that A[o is
singular and irreducible, then Ao}, after a suitable permutation of indices, is one
of the singular irreducible diagonal matrices A jjin the normal reduced form (cf.
(2.15)) for A.
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Proof. Since A is an M-matrix by hypothesis, we can write, as usual, that 4
=s] — B, where B=( and where

5= p(B), with equality only if A4 is singular. (2.11)

Assuming first that there exists a proper subset oo={o;...., o} of {n) such that
Alo] is singular, then we can also write A[o]=sI—B[«], where B[«] is the
associated principal submatrix of B. A well-known consequence of the Perron-
Frobenius Theorem (cf. [9, p. 46]) gives that

p(B)Z p(B[a]). (2.12)

But, as A[«] is a singular M-matrix by hypothesis, then from the statement in

A0 p(B[o])=s. (2.13)
Combining the inequalities of (2.11)-(2.13), we see that

s=p(B)=p(B[a])=s, (2.14)

which establishes that A is a singular M-matrix. If 4 (and hence B) were
irreducible, we would conclude, since o is a proper subset of (n), that
p(B[])<p(B) (cf. [9, p. 30]), which contradicts (2.14). Thus, 4 is a singular
reducible M-matrix.

Conversely, suppose that A is a singular and reducible M-matrix. Since 4 is
a singular M-matrix, we can write A=p(B)I—B where B=(, and as A is
reducible, so is B. Putting B into normal reduced form (cf. [9, p. 46]) equiva-
lently implies that there is a P, such that

1‘11,1 1‘}1,2
A

PAPT= 2.2 o5 (2.15)
\N:
0 A

which we call the normal reduced form of A, where each AJ ; is an irreducible
M-matrix, and there is a j, with 1<j<s, such that 4;; is singular. On
permuting back indices, it is evident that AJ defines a proper subset o
=[oy,,y,...,0) of (n) such that A[«] is smgular (and irreducible), which
completes the first part of this lemma. Moreover, it is also clear from the
arguments given above that any proper subset o« of (n) for which A[«] is
singular and irreducible is such that A[o«], after a suitable permutation of
indices, is precisely one of the singular diagonal matrix A, j;jin(2.15). §

Lemma 4. Let A=[aq, ;] be an nxn M-matrix which admits an LU factorization
into M-matrices with nonsmgular L, and let o={o,,,..., 0} be the largest
subset of {(w,> such that A[«] is an irreducible M-matrix. Then, at the oy-th
column Gaussian elimination step applied to A, the w-th diagonal entry of A,
(cf. (2.9)) is zero iff A[o] is singular.

Proof. Suppose first that C=[c¢, ;] is any kxk irreducible M-matrix. From
Kuo’s result [7], C admits an LU factorization into M-matrices with non-
singular L. If k>1, then «:={1,2,...,j} defines the proper leading sub-
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matrix C[2?] of C for each j with 1<j<k. Because C is irreducible, C[a"],
from the proof of Lemma 3, is necessarily a nonsingular M-matrix for each
1<j<k, whence (cf. [1, p. 134, (A1)]) det C[o¥]>0 for 1<j<k. But, as is
well-known, the diagonal entries cj’ D of the upper triangular matrix (cf. (2.5)),
derived from applying Gaussian elimination to C, satisfy

G- det C[o] -0

. 0. —
I, m 5 for 1§]<k, where det C[OC( ]—1,

while the final diagonal entry cf; " is zero iff C is singular, ie.,
-1 _
C}c’fk '=0.

Thus, only at the final step of the application of Gaussian elimination to C
can one encounter a zero diagonal entry. This will be useful below.

Continuing, let A=[q, ;] an M-matrix which admits an LU factorization
into M-matrices with nonsmgular L. If a={oy,...,o,} is a largest subset of
{oyy such that A[«] is irreducible, we know from Lemma 3 that A[«], after a
suitable permutation of indices, is one of the irreducible diagonal matrices fij, ;
in the normal reduced form (cf. (2.15)) for A[{x>]. This implies, in the
terminology of Rothblum [8], that «, one of the equivalence classes of the
communication relation induced by the directed graph of A[{«>], commu-
nicates with no vertexv,, 1<t<w,, not in o. This further implies, as is easily
seen, that the partlcular diagonal entries a“"f“ 1<j<k, arising in the elim-
ination process applied to A4, are just the successive diagonal entries obtained
by applying Gaussian elimination directly to the submatrix A[«]. But, from
the preceding discussion, a® V=0 iff A[«] is singular. §

Oks Ak
Having considered Problem 1, we next wish to determine (Problem 2) if an
nxn M-matrix A=[a; ;] admits an LU factorization into M-matrices, without
regard to L or U bemg singular or nonsingular. First, suppose that a, , =0. If
some a; ;40 and some a, ,+0 for 1<j, t=n, such a factorization of 4 fails
from Lemma 1. Otherwise, either all entries in the first column of 4 are zero,
or all entries in the first row of A are zero, i.e., we can express A as

(2.16)

where A, is evidently an (n—1) x (n—1) M-matrix. Similarly, if a; ; >0. we can
apply, as before, Gaussian elimination to the first column of 4, and we obtain
(cf. (2.1))

al 1 alz...all
= : 22 L 217
A [ 01 4, ] 17

where 4, =17"' A, with L, a unit lower triangular M- matrix (cf. (2.4)). In either
case, the problem is reduced to determining if A, admits an LU factorization
into M-matrices. Indeed, if A, =L-U is such a factorlzatlon of 4,, we see from
(2.16) (when a, =0) that
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or (2.18)

gives an LU factorization of 4 into M-matrices, while from (2.17) (when
a, ;>0),

1 0"
_ ay,1/ay .[al,] al,Z"'al,n] 219
i I I N i e 1)
dy 1/

similarly gives an LU factorization of A into M-matrices. Thus, this decision
procedure can be successively applied to the lower order M-matrices 4, (as in
(2.5)), to determine if 4 admits an LU factorization in M-matrices.

3. Proofs of Main Results

With the results of § 2, we now give the

Proof of Theorem 1. i)=-ii). Assuming A admits an LU factorization into M-
matrices with nonsingular L, suppose o= {a,,%,.....0,} is any proper subset of
(n> for which A[«] is singular and irreducible. Then from Lemma 3, 4 is a
singular reducible M-matrix, and from Lemma 4, at the o-th Gaussian elim-
ination step applied to 4, a®; '=0. Hence, from Lemma 1, it is necessary that
at~V=0 for all o, <t<n. However, from Lemma 2, this implies that there is
no path in the directed graph G,(4) for A from any vertex v, to the vertex v,
for all o, <t<n. Because A[«] is by hypothesis irreducible, this further implies
that there is no path from vertex v, to vertex v, for any >, and any 15j<k.
Thus, i)=>ii). ' ‘

not i)=not ii). Assuming that the nxn M-matrix 4 does not admit an LU
factorization into M-matrices with nonsingular L, there exists a positive in-
teger k with 1 <k <n such that the factorization procedure of §2, applied to A4,
fails at the (k—1)st step, ie. (cf. (2.5)), a¥; V=0 and a¥, V40 for some r with
k<r<n. This means that the factorization procedure does apply to A[Kk>],
but as al; V=0, then (cf. (2.9)) A[<k)] is a singular M-matrix. Next, let o
={oy, 005, ..., 0} with 1=0y, <o,<...<o;=k be the largest subset of (k) for
which A[o] is irreducible. From Lemmad4, A[o] is both irreducible and
singular. Because a*;V+0, it follows from Lemma 2 that there is a path in
G,(A) from v, to v,. Thus, ii ) in Theorem 1 cannot hold. §

We now establish Theorem 3 as a consequence of Theorem 1.
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Proof of Theorem 3.i)=-ii). This has already been established in § 1. (cf. [6]).

ii )=iii ). Assume that PAP” admits an LU factorization into M-matrices
with nonsingular L for all Pe#, and assume that o={x, 0, ...,04} is any
proper subset of (n)> for which A[«] is singular and irreducible. From Lemma
3, A is necessarily singular and reducible, and moreover, A[«] is, after a
suitable permutation of indices, one of the singular irreducible matrices 4 ; in
the normal reduced form (2.15) for 4. Next, from Theorem 1, there is no path
in the directed graph G,(A4) for A from vertex v, to vertex v, for any £> o and
any 1<j<k. But as this must hold for any permutation matrix P in P, it
follows that there is no path in the directed graph G,(A4) for A4 from vertex v, to
vertex v, for any t¢o, and any peo, whence a, ,=0 for all t¢o and all pew.
Thus, ii ) implies iii ).

iii )=-1). Assuming iii ), this means that /IM:(O for any /#j in the normal

reduced form (2.15) for A. On taking transposes and using a result from
Berman, Varga, and Ward [2, Theorem 1 (ii)], this implies that there is an
x>0 for which A7 x=0, whence x’ 4=>07. Thus, A satisfies condition (1.3),
and iii) implies i). §
Proof of Theorem 4. With the hypotheses of Theorem 4, set S;:={1.2,....m,}.
and set S,:=<n>~S,, so that |S,|=m, and |S,|=m,. For the matrlx A of
(1.12), we remark that the only proper subset o of (n) for which A[o] is
singular and irreducible is a=S,.

First, consider any permutation of the elements of {(n) for which the final
element of this permutation is from the set S,. As is readily verified, the
number of distinct ways in which this can be done is m,-(n—1)!. For any such
permutation, let Q denote the associated permutation matrix in #,. Then, we
claim that ii) of Theorem 1 vacuously holds for QAQ". Indeed, if «
={oy,0,,...,0,} is a proper subset of {n) for which Q AQ"[«] is singular and
irreducible, then o is a renumbering of S, with o, =n. Hence, from Theorem 1
and the definition of (1.9), it follows that Qe2%(A).

Next, any remaining permutation of <(n) is such that the final element is
from the set S,. If R denotes the associated permutation matrix in Z,, and if o

={ot;,0,, ..., ock} is any proper subset of {(n) for which RART[oc] is singular
and irreducible, then o <. From the irreducibility of 4, ; and A2 , and from

A, ,=%0 in (1.12), it is easy to see that there is a path in G,,(RART) from a
vertex v, to vertex v, for some t>o,. Hence, from Theorem 1 and from (1.10),
it follows that RGQ”’(A) Thus, |2(A)|=n!—|25(A)|=m,-(n—=1)! 1

Proof of Theorem 5. Based on the discussion in §2, this proof follows easily
along the lines of the proof of Theorem 1 above. §
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