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8l. Introduction

‘ et A = (a, j) be & real non-singular mxn matrix with a; ; # 0,
5 , -3

1 £1 <n, If we seek to solve the matrix equation

1 Ax =k,

then the Young-Frankel [1,2] succesgive overrelaxation iteratgve.method, is
defined by

W) . W) (£+1) - o, _,.®d
(2) * x5 M’{;Ei i 5 %3 ¥ jgi by 5%y gy =% }:
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where the matrix B = (bi j)’ and the vector g are defined by
H
- ai,j/ai,i y 1 7! J
f = o € = Y
(a") bi,j ? 08 ki/ai,i,l..l,,j S n.
0 y 1=
For suitable choice of the relaxation parameter w, Young {l} established the
rapid convergence of (2) for a large class of matrix problems satisfying his

definition of property (A). It was later shown that property (4) for the

matrix A implies that the matrix B of (2') is, in the terminology of Romanovsky

3 ,'cvclic of index 2, and the Young-Frankel successive overrelaxation method

was generalized [A] to cases where the matrix B of (2') is cyclic of index
p2 2. ‘ k



Since the introduction of the Young-Frankel successive overrelaxation
method, several variants of a new implicit alternating direction method {6, 7,
& have appeared, and for the model vroblem, the numerical solution of the
Dirichlet problem for the unit square on a discrete uniform mesh of side h, these
new iterative methods are asymptotically an order of magnitude faster than the
successive overrelaxation methoa, as h-»0, DMore precisely, the rate of con-
vergence of the successive overfelaxation method with optimum relaxation factor

is, for the model problem, proportional to h, while the new implicit alternat-

ing direction methods, with optiggww@@@% Tomsparameters, have rates of con-

vergence vproportional to bln hﬁ—@@fgr the model i :1em, as h=-» 0, Unfortunately,

these new methods have been demonstrated to be rigorously faster essentially
only for the case of the uUirichlet problem for a rectangle [5{, since these

methods depend upon the ability to’spli# the matrix A into
(3) A=H+V

where H and V are symmetric and positive definite, and

(4) HV = VH.

Obviously, this implies that 4 is also symmetric and positive definite. TFor a
large class of matrix equations arising from five-point numerical approximations

of self-adjoint elliptic differential equations of the form

I (x,y) u (x,y) - div {D (x,y) grad u (X,y)}’ = s (x,y),

matrix equations can be derived ES, 8} so that A = H + V, and all matrices are
symmetric and positive definite. It is the condition of (4) which is difficult
in general to fulfill.

We seek to construct an iterative method, with assumptions weaker
than that of (4), whose rate of convergence for the numerical solution of the
Dirichlet probler on a uniform mesh of side h in a non-rectencular region is
asymptotically hl/éyas h=+0, We shall accomplish this by combining the attrac-
tive features of both the Peaceman-Rachford iterative method 61, one particular
variant of the implicit alternating direction methods, and the successive over-
relaxation iterative method as applied to matrices of cyclic index greater than
2o '



g2,

Cyelic Matrices
Let M be & real rxr matrix. If there exists an rxr permutation matrix
Asuch that Jo o 0«0
N M2 0O O 0
(5) AvA>= o M, © 0
0 0 0c¢ M
P

where the diagonal submatrices are square, we say‘{é, %j that M is ¢yelic of
index p. Such matrices are the basis for Young's property (4) and its general-
izations. In fact, if M is in the block form of (5), it is also consistently
ordered in the sense of 413 If we seek to solve the matrix equation

(6) u=My+f, : (1)

then, assuming that M is block form of (5) and that the vectors y and f are par-
titioned into vector components Ué; Fj’ 1% j €£p, according to the partition-
ing of the block form of (5); the successive overrelaxation iterative method
applied to (6) is

iUmmz%wa%tﬂ& 1m%m}

Uj(’gﬂ) -0, 1 M, Uj_(_‘f“) HE - Uj(f)}, 2€j<p.

We now consider the Peaceman-Rachford iterative method |6 } With (3),

we write (1) as two equations

(8) %H*P”

oo ELE LY
pL) &

k X
k + (pI - H) x.

it

The matrices H and V, in addition to being symmetric and positive definite, are
each, after a suitable similarity transformation by a permutation matrix, tri-

diagonal matrices. The Peaceman-Rachford iterative method 1s defined by

)
(H+jai3;)§i=_1§+39i1»v)>_%_
(9) &
<V+)°i D}-C'iw}-l:k"*(f’il”H)‘X
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where the constantsjoi are positive acceleration factors. The matrices H Ry I
and V * Py I are symmetric and positive definite tridiagonal matrices, and thus
the matrix equations of (9) can be efficiently solved by means of the Gauss elimina-
tion method T



The concept of a cyclgic matrix can be profitably applied to the study
of the Peaceman-Rachford iterative methods We write the equations of (8) in
the block form

H+plI Ve-pl k

>

(10)

Ed

-'P I v +p I k
where ( ) and <li) are column vectors with 2n componen’cs. Since the square
d:.agonal submatrices H + 0 I and V + P I are non-s:mgular, (.“LO) is equivalent

to

x 0 @+ p DT 1 -v)\ /x
(11) =
x (V+p D (oI - 1) 0 x
(H+p 0™
+ .
(vep Dk
If
0 (H+p 1) (oI - V) x
(12) B = y Uom s
2 (v+p D7 (oI - H) 0 x

then (11) is exactly of the form (6), where Bp is cyclic of index 2. Applying
the Gauss-Seidel iterative method to (6), the special case w= 1 of (7), to the
ma.rix equation (6) with B,= M, we have

(13) ' '
00« DT prom @ L @D,
or equivalently
(H +p 1) 3__:,1('&1) = 931 - V) 2».'.2&> +k
(14) !
0 ep1) 5,8 - om0y

This, except for notation, is equivalent to (9) for the case in which all the



parameters Py are constant. Thus, the Peaceman-Rachford iterative method with
parameters VA all constant is just the Gauss-Seidel iterative method applied to
a matrix which is cyclic of index 2. Generalizing, if the Peaceman-Rachford

iterative scheme uses g parameters A cyclically, then we consider

(15) 33,=?P(q)g,+g,
where i} -1 K
0 0 0 (H+pI) “(p, I~ 7V)
(Vapy DHp I-H o 0 0
1) By = 0 W, D, I-7) o 0
(; 0 eee (U ?ql)'lgoql -H)O: r

Thus, B,(q) is cyclic of index 2q, and u is a vector with 2neq components. It
1s easily shown that the Gauss-Seidel iterative method applied to (15) is equi=-
valent to the Peaceman-Rachford iterative method with g parameters P4 used
cyclically. The special case o *,02 = ese =/°él = p 1s admitted in the preced-
ing formulas.
It is interesting to point out that the Gauss=-Seidel i‘(p) matrix de-
rived from (13) is
' -1

0 (H+pI) ™" (pI - V)
a7 L) = . ,

0 (V+p n™ (pI - H) (H+pI) " (pI - V)

so that we may write (13) in the form

(£+1) W)
i ac-l = f( ) % + gl
W wa) 4 “!)

2 £ &>

The. eigenvalues of df(p) are thus zeros and the eigenvalues of the matrix

Tp = (V 0 I)_l(pI - H) (H +pI)-l(pI = V), which we shall call the Pecceman-
Rachford matrix.

. 1/2 o
We seek to obtain rates of cornvergence of order h / s for the Dirichlet
problem on a uniform mesh, as follows., The matrix ?’p(Z), which depends on but
one parameter p » 1s cyclic of index 4 and consistently ordered. Iy choosing

the parameter pso as to minimize the spectral radius of B_.(2) , we then apply

P



the successive overrelaxation theory of {4} to the matrix equation (15), with
Bp (2) replacing B (q) This introduces a second parameter w. The conditions
under whieh successive overrelaxation can be rigorcusly applied to (15) are
weaker than the condition of (4), and includes (4) as a special case.

Cne Parameter Acceleration Methods

Both the successive overrelaxation iterative method, with relaxation

factor w, and the Peaceman-Rachford iterative method, with a single parameter P

can be considered as one parameter iterative methods. It 1s of interest to

compare their rates of convergence. The spectral radius of the Peaceman-Rachford

matrix

_ =1 L) §
(18) 4 TP = (V + PI) (PI - H) (H + PI) (PI - V)
can be estimated as followse Since H and V are symmetric and positive definite
matrices, let 0 <ol € x € f;, 0 <A, & x & P, be the smallest intervals contain-

s
ing all the eigenvalues of H and V, respectively, We now consider the matrix T:F
defined by

(19) 'r}; = (V+pD) T, (V "'PI)MI = (pI - H) (H +p3:)-=l bI=-v) (v *{pl):”l

n
e owxh s (L

>l/'2 for p%0, let
i=]

(20)  sup Npr-m wepn Tz Ay .
lixih=1

Since V is symmetric and positive definite, then x = }:. o, &5 where the
S k=l *

é-k form an orthonormal basis for our n-dimensional vector space over the complex

numbers, and V & = & @. « Thus

n
T
-0 DT e T e G g
- 2 2 2
Py - % (P“s”‘;z\) {P'Bz
Sincemax(f+t)$$zxét$§2 (%T%“) wm}{{'/"*‘; 3 P* By

I
and 2. le,) ?
k=1~

=1 rromflxgll =1, it follows that
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(1) A () & max% %%—%—ﬂ ; kf’“‘@zuu A, ) <1

Similarly, if

(201) Mot -1 @+eD Tl = A (o,
Egl - P | P ?-"\ o \P

then

p-n

; \P"ﬁln = K, (< L

(211) 1\2 (p) & max %1

P+ oy P+ By
Tt follows now that &'?} | % ﬁﬁ!(f)’ 1\2 (p), and since ?; and ?P have the

same eligenvalues,

. Y] ‘
- . s _
(22) w1 €A (prdh, () & AL ) A, p)< .
Thus, | (T ), the spectral radigsﬁ of the matrix T , is less than unity, showing
that T is a convergent matrix EEE@ I
Fun ad ~a ~

(23 min Ay @) A, =N e D (p),

p>0 |
itmn%s%mmﬁ@%édﬁﬁlmdﬁzgV%Qytmt

(24) max {Pl’ 9232!902 min iﬁls !02} .

For the numerical solution of the Dirichlet problem on the unit équare
with wniform mesh spacing h = 1/, the five point approximation
P = ;‘5»"4»
(25) 4 U g ( LR N AL + ui,j+l) 0 , 1%i,j% N1,
to laplace's equation leads to a system of (Nwl)2 linear equations. It can be
verified that the spectral radius of the corresponding Jacobi matrix Bof (2)

is

~ s . . - . ! ‘
If C is an arbitrary nxn complex matrix, then ;z{Q?:: max %Aki , where the
e are eigenvalues of C.



(26) 1w (B) = cos (h),

Assuming that the matrix A of (1) is consistently ordered, the formula for the
optimum relaxation factor W, is

= 2 = 2 -
(27) W,

1 +V1 - % (B) 1 + sin @n)

Ir R[Efw] = - 1n .,L-J (fw) is the rate of convergence for the successive overrelaxa=
tion method, it is known [1] that 1 (I cuk)a* (wb - 1), and asymptotically

(28) R [a"wb] = 2%h + 0 (hz), h 0.

For this model problem, a =a, =2 ‘_l - cos @'h)} y Py = B, =2 [1 + cos fﬂ‘h)},
and Py = Q= 2 sin frh). From (24), Po = 2 sin @Fh), and from (22), we derive

- L+ cos (Wh) = sin (®h) ] 2,
(29) W (Tpo)s [1 + cos (h) + sin (wn) 4 - “p = 1.
It can actually be shown that m;n L (Tf’) = | (T}‘)O) =W -1, and thus
(30) m;x R ['rpl =R [Tp(%l = R[fwbl = max R{&’J.

VWe conclude that, for the model problem, the Peaceman-Rachford iterative metheod,
with a single optimum parameter P> 1s exactly as fast as the successive overrelaxs-
tion method with optimum relaxation parameter w. Thus, from (2&), both of these
one parameter methods give rates of convergence proportional to h, the mesh
spacing, as h - 0,

We now consider the numerical solution of the virichlet vroblem for
a closed set of points consisting of the (connected) union of a finite number
of unit squares with sides parallel to the coordinate axes in the plane, We
.denote by L the smallest (in area) square consisting of unit squares such that
D20, If we impose a uniform mesh of side h = 1/N over £ and Q » and approxi-

mate laplace's equation as in (25), then the eigenvalue bounds ai, ﬁi and Ei B
‘ b

forfl and Q respectively satisfy
a. £ 0. £8.£F
0<% <a <p &F,

ai Ej < \[ai B.

i s 1

(30)

il
s
-
o
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where 5'1 = 32, El = :‘?2. let L (TP (1)) and TL (T (_ﬁ)) denote respectively the

numerlcal solution of the Dirichlet problem over L and Q. Applying the pre=-

vious results of the model rroblem to £, we conclude that

(E - ? o
(31) (T (@) = = min u (T, (@),
M Po \Ll \J( 1 mpn 8 P

where Po =J(-1.l Bl m\l 52 E . Because of the inequalities of (30), we have, for

~ F1 = n F1 = Py ~
Ll , that f\l (po) =(<3l O)é( L O) , and similerly, !\2 (po) <

+ =
i:l pO pl + pO
Py o
— . Since {; = f,, then with (22) and (31), we have
Fo * g
(32) n(r, @) u(r @),
| | Po Po

and thus

(321) max R (T (Q))2 max B (T_ (@) =R (T_ Q).

p P p P Po
We conclude that the optimum rate of convergence, for the numerical solution
of the Cirichlet problem, of the Pesceman~Rachford iterative method with a singlie
parameter p is at least at fast for QL as it is for {i. Young and Ehrlich ob-
served this numerically in i;Ll}. What is more important, however, is that for
either L or Q , the rate of convergence of the optimized Peaceman-Rachfofd method
with a single parameter is at least of order h, as h-+0.

Results of the p-Cyclic Theory and Applicetions

We briefly summarize the pertinent results of [4]. Let B be a con-
sistently ordered real nxn ma‘rix which is cyclic of index p 2 2. If 12> u(B) >0,
let w, be the unique positive value (less than p/(p - 1)) satisfying

p p 1-
(33) wy = (:—E—-) p-1) W, - 1).

u (B)

\O



w_ -1 |
From the mapping p (Z) = ”lﬂé 7+ -2 }, let S_ (ufB)) be the image of the
) gP-1 p
| 1/p -
circle |z} = }(gxb -1 -11 . Forp =2, S, is the interval - (B)¢

% & TJV (B}g For p » 2, 8 is a Jordan curve whose interior contains the origin
u=0, lLet ?Sﬁp CEL (B)) denote the set of points | consisting of Sp and its in-
terior. If ‘fwis the overrelaxation matrix derived from B where w» is the relaxa-
tion factor, then Lly‘l if the eigenvalues uof B lie in ’é; (n (B)),

[fw) = @-D6-1

I (gw} > a(iwb) for w # W, .

<

(34)

Now let T, (1 (B)) be the set of points [F where 1 ¢ 8, (L(B)). For p = 2, T,
is the interval 0 £ x £ ]3,2 B, But for p> 2, T not only contains the interval
O0%x% TF (B}, but non-real points as well, Singe the relaticnship {.A} between
the eigenvalues pof B and the eigenvalues Aof afl, the Gauss~-Seidel matrix, is
A= ;}) , then the results of (34) hold if the
eigenvalues of Kl lie in Tp (u(B). From (4],

we have the following asymptotic relationship

(35) R g?wbm(’%g:wﬂl/z ER @l)'& 1/23 - pyer., FHEEE L

With these facts, we come to the application of the above theory to the iterative
method which combines successive overrelaxation and the Peaceman-Rachford itera=-
tive method. In g2, we showed that the Peaceran=Rachford iterative method with
two parameters Py and P, was equivalent to applying the Gauss-Seidel iterativﬁ
method to a particular 4-cyclic matrix. With Ny = Py = py let Xi (p) denote

the Gauss-Seidel matrix whose spectral radius is ("(p). With the above discus-~
sion, we have the ‘ .

Theorem. If the eigenvalues of &a (p) 1lie in T4 (1 (p)), then the optimum re-

laxation factor w, satisfies (33) with p = 4, and

T (vfwb(p)) =3 (- 1).

Corollary. If H and V satisfy (4), then the eigenvalues of ‘fl (p) lie in TA,(IL (p))

10



for all p >0, and the conclusions of the zbove theorem are valid.

The proof of the corollary follows from the fact that the eigenvalues
, of cfl (p) are just zeros and the eigenvalues of Ti. But if H and V commute,
| the eigenvalues of ?fl (p) are necessarily non-negetive real numbers for every

p >0, and we can apply the results of the theorem zbove,

s Finally, this new iterative method, which cﬁiy}znds on two acceleration

| parameters p,w, has a rate of convergence of order h™ ™, as h=*0, for certain

| problems. To see this, we obtained a rate of convergence of order h for the

? Dirichlet problem of §3 without the assumption of (4), by selec@}ng the parameter
| p properly. Assiming the weaker conditions of the Theorem, we c‘an arply the

| asymptotic results of (35), and cenclude that our two parameter iterative method
i with optimum parameters is of order hl/'2 as h® 0., for the solution of the

Dirichlet problem in the plane,

11
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