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Reésume. Récemment, J. Szabados a obtenu un nouveau théoreme réciproque
dans la théorie de la sur-convergence de Walsh, fondé sur I'Interpolation de
Lagrange. Ici, nous développons un théoreme réciproque similaire, fondé sur
I'Interpolation d’'Hermite, qui généralise le résultat de Szabados.

Abstract. Recently, J. Szabados has obtained a new converse theorem in the
Walsh overconvergence theory, based on Lagrange interpolation. Here, we simi-
larly develop a related converse theorem, based on Hermite interpolation, which
generalizes Szabados’ result.
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1. Introduction.

Let A, denote the collection of functions analytic in |z | < p, and, as
usual, let =, denote the collection of all complex polynomials of degree at most
m. For any f(z)€ A, with p > 1, and for any positive integer n , let
L, _y(z ; /') denote the Lagrange polynomial interpolant in 7, ; of f (z) in the

n -th roots of unity, i.e.,

Ln—l(w; f ) = f (w) ’ (11)

o0
where w is any n-th root of unity. With f (z):= ¥ a, 2% in |2 | <p,and
k=0

for each positive integer [ , set

-1 n-1
Qn-—l,l(z ) /)= Z 2 A 4 4n zk ) (1'2)

7=0 k=0

so that @, _;,(z ; f ) is also an element of m,_; . Then, the original and oft-
cited beautiful resuli of J. L. Walsh [6, p. 153] on overconvergence is the case
= 1 of

Theorem A ([1]). For any f (z)€ A, with p > 1, and for any positive
integer | ,

lim {LH(:;/)—Q,.-,,, (z:/) =0 forall [z]<p* (13

n —oo

the convergence being uniform and geometric on any closed subset of
2| < p'*!'. Moreover, the result is best possible (in the sense that
1.3) is not valid at each point of | z | = p'*! for all f(2)in A .

p
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Now Theorem A, in the terminology of approximation theory, is a direct
theorem in the Walsh overconvergence theory, in that the assumption
/ (z) € A, leads to the overconvergence result of (1.3). Recently, Szabados [4]
obtained the following interesting converse theorem to Theorem A. For notation,
let A,C denote the collection of all f(z) in A; which are continuous on
2] =1.

Theorem B ([4]). Assume that f(z)€ A,C . If p > 1,if ! is a positive

integer, and if' the sequence
o0

{ Loz 5 1) Quagle 5 1) | (L4)

n =]

is uniformly bounded on every closed subset of |z | < p'*! , then
f(z)e4,.

It may be asked if the conclusion of Theorem 3 (namely, that f (z) € A,)
is best possible, i.e., with the hypothesis of Theorem 3, could f (z) € A ,- where
p° > p , in general? On considering the particular function f(z) = (p-2)!
which, with (1.3) satisfies the hypothesis of Theorem B, one sees that f (2) is an
element of A, , but is clearly not an element of A, for any p” > p . Iu this
sense, Theorem B is best possible, as was remarked by Szabados [4].

There are now many known direct theorems in the Walsh overconvergence
theory on the difference of iiiterpolating polynomials (cf.[1], Rivlin [2], 5, ch. 4]).
It is natural to ask if there are similar converse theorems whicl complement Sza-
bados’ Theorem B. Here, we show that such a converse theorem can be similarly
derived for Hermite polynomial interpolation.



2. Statement of 2 New Result.

We first state a direct theorem for Hermite interpolation in the Walsh over-
convergence theory. To fix notations, for any f (z) € A, with p> 1, for a
fixed positive integer r, and for every positive integer n , let hen_i(z ; ) denote
the Hermite polynomial interpolant in 7,, , of f , f * , 5 £ D in the n-th
roots of unity, i.e.,

b @i f)=fUw), j=0,1,+,r-1, (2.1)
o0
where w is any n-th root of unity. Again, with f(z)==3Y qz* in
k =0
| 2z | < p, and for any positive integer {, set
~ rn -1 -1 n-1
Qm-l,l(z ) f)= Z akzk + E ﬂj,r(zn) Z ak+(r+j~l)nzk ) (22)
k=0 j=1 k=0
where (cf. [1])
r-1 r+j-1 A )
B (2):= k (z-1)F , j=1,2, -, (2.3)
k=0

and where the last sum in (2.2) is defined here, and subsequently, to be zero when

I =1 . Note that @m .1(2) is also in 7, _; . With these notations, a direct
theorem for Hermite interpolation in the Walsh overconvergence theory is

Theorem C ([1]). For any f (z) € A, with p > 1, and for any positive
integers r and /,

liny { h’m«l(z ) f ) - érn-l,l(z ) f) } =0 ) for all !Z I < pH—(l/r) 7(24)

n—oo

the convergence being uniform and geometric on any closed subset of
|z | < pitl/r), Moreover, the result is best possible.

A new result, a converse result to Theorem C, is the following. For nota-
tion, for each positive integer r, let A IC("” denote the collection of all f (z) in
Ay for which f (z), f "(z), -, and [ ("‘”(z) are all continuous on |2 | = 1.
For any f (z) € A,C"1 and for any n > 1, it is evident that the interpola-

tory polynomiasls h,, (2 ; f ) and @m*u(z i [ )of (2.1)-(2.2) are well-defined.
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Theorem 1. Assume that f (z) € A,C(’“I) . Ifp>1,if! is a positive

integer, and if the sequence
o0

{ heas(z 5 £ )= Quoi(z 5 1) } (2.5)

n =]

is uniformly bounded on every closed subset of |z | < p'tt/r) | then
/(z)e4,.

As the special case r =1 of Theorem 1 reduces to Szabados' Theorem B, we
remark that Theorem 1 then generalizes Theorem B.

The proof of Thegrem 1 will be given in Section 3. Because it is needed in
the proof of Theorem 1, we state, as in Theorem D below, a recent related result
of Saff and Varga (3, Theorem 2] on Hermite interpolation in the Walsh overcon-

vergence theory.

Theorem D ([3]). For each f (z)€ A, , and for each pair of positive
integers r and [/ , the sequence (2.5) can be bounded in at most r +10 -1
distinet points in |z | > ptt(t/r),



3. Proof of Theorem 1.

With the notations from Sectior 2, we begin with the following result which,
for r =1, reduces to Lemma 1 of [4].

o0

Lemma 1. If f (z):= 5 a;2* is an element of A O then for each posi-
k=0
tive tnteger |,
~ 00
hrn-—l(z i f ) - Qm—l,l (z i S ) = hm—l(z ) Z a; 2k ) . (3.1)
k=(r+l-1)n

Proof. As h,,_y(z ; [ ) of (2.1) is necessarily a linear operator which reproduces
all polynomials of degree at most rn -1 , then

0 r (r+i{-1)n-1 ‘
rn l( f) rn—l [Z ) E a, z l =hrn-l [ Z 2 a2 l
k=(r+l-1)n k =0
rn-1 {r+l-Dn-1
=hrn—l [Z ) E akzk ] +hrn—l [Z; akzk ]
k=0 k=rn
rn -1 (r+i-1)n-1
=Y 2"+ Y ah,(z;2%)
k=0 k=rn
rn-1 .
= L o 2% + Z E U p(r 47 -1)n R iz 5 2FFHT-Dn )
7=1 k=0 ‘
It is known (cf. [1, eq. (4.4)]) that
bz 3 2FH 4R ) = 2k g (27) forj =12, -, (32)

where 3; . (z) is defined in (2.3). Inserting the above identity into the previous

display gives, with the definition of @‘m_,',(z ; [ ) in (2.2), the desired result of
(2.1). [I

Szabados [4] hus pointed out that his special case r = 1 of Lemma 1 gives
an clementary proof of Theorem A. We remark that Lemma 1 similarly gives an
clementary proof of Theorem C. As its proof follows along the lines of the proof
of Theorem 1, we omit the details.

Next, as #; (z) from (2.3), is in 7, _, , we can write

r-1
Birlz)= 3% C, (5", (3.3)
v==0

where evidently
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r- r+js-1
Cop(i)i= 5 (apr | 7F

k=v

Lemma 2. The polynomsials

Curte)i= 5 v [T (1) = B e et laar k)

k=v k=y

(3.5)

fJor v=0,1,,r -1, form a Lagrangian basis for T._y , te, for any
pr—l(x) € o1 '

r-1
pr—l(x) = E Pr (j+1—r) Cj,r (27) ,fOf alz . (36)
7=0

In particular, choosing p,_i(z) = 1 in (8.5) gives

r-1
1= 3 C,,(N\+1) for any integers \ and | . (3.7)

v=0

Proof. 1t is evident from (3.5) that

~1) --- _ r-v-1 _ —p—1) --- i
C,. (z+1-r) = z(z-1) '(x v+1) {1+ e (z-v)(z-v-1) - (2 -k -v+1) } ‘
' v! k1 k!
(3.8)
As the multiplier z(z-1) -+ (~(v-1)) in (3.8) vanishes forz =0, 1, -, v- 1 ,
then ¢, (j +1-r)=0for j =0,1, ,v-1, while for z = v , (3.8)

gives C, (v+ 1-r)=1. Similarly, for z = v + (where 1 <1 <r -1},

l 1Yo ] —(F —
the quantity in braces in (3.8) reduces to { 1+ % (-1)f -1 AE[' (k-1)) ,
k=1 "

which is the binomial expansion of (1 - 1) = 0. Thus, we have shown that

C,,»,(j+l~r)==5j,,,,forallj=0,1,---,r~1 .

r-1
Consequently, { Cy.(z) } forms a Lagrangian basis for 7, | , from which

v==0

(3.6) and (3.7) directly follow. []
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o0
Proof of Theorem 1. Let f (z) = Y a; 2* be any element in A 1O 1) satisfy-
k=0
ing the hypothesis of Theorem 1, and let R be any number satisfying

1< R < pttlir) (3.9)

Now, the boundedness hypothesis of (2.5) implies, from (3.1) of Lemma 1, that
there is a constant M (R ) such that

max by |5 gt | 1 <mpy<o, @
|z |=R k=(r+l-1)s

for any s > 1. In particular, choosing s = 27 in (3.10) gives

max lhm-l[z; Y gzt ] | <MR) . (311
[z =R k=2(r +1-2)n

Next, setting

2rn -1
o z* ]:: S b2k (3.12)
k =0

o0

h2rn—l [ 2
k=2(r+l-1)n

the bound from (3.11), along with Cauchy’s formula, implies

[b | <MR)-R*, k=0,1,,2rm -1 . (3.13)

Since the set of 2n-th roots of unity includes all n-th roots of unity, we
obtain (cf. (2.1) ) the identity:

hrn—l(z ) g) = hrn-l ( Z 5 h2rn—l(z ) 9) ] ’ (3'14)
oo
for any ¢(z} EA,C("” . Choosing ¢(z) := 3 a, 2% | then g(z) is
k=2(r+{-Un

just f(z), minus a polynomial, and is hence in AIC(’“” , for any n > 1 .
Using in succession the identity of (3.14), the definition of (3.12), the fact that
hen -y 1s a linear operator which reproduces polynomials in Ten-1, and the identity
(3.2), we obtain the chain of equalities:

00 00
hrn—l [ z Z a/czk ] zhrnwl [ € ;h2rn—l(z ) E akzk)
k=2(r+{-1)n k=2(r+{-1)n

2rn -1 ] rn -1

rn -1
. N k L, . Sk
= b, [ 23 Y b2t | =% beh 4 S bk (s 2k
k =0 k =0 k=0
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rn -1 k n-1 r-1 k+(r+3)
:‘_‘Ebk‘z +2 2L1+r+)\)n hrnl( ) 2 ’ n)
k=0 \=0
rr:_;l r-1° n -1 ; .
= L blcz + Z ﬂ)‘+lr zn ) 2 bk+(r+A)n 27 ,le.
k=0 A=0 k=0
00 rn -1 r-1 n-1
hrn-l (z ) E E blcz + E ﬂ)ﬁ-l,r (zn) Z bk+(r+X)n z
k=2(r +1-1)n A=0 k =0
(3.15)
Now, it follows from the definition in (2.3) that
| Baere(2") | <272 (|2 |" + 1) forallz,andallx >0 ,
from which it easily follows that
| Brgrr (27) | < 22" HAR™ | forallX >0 . (3.16)

max
|z | =R

Applying the bounds of (3.16) and (3.13) to the terms of (3.15) gives, after an
easy calculation, that

| By 1[ S ] | <n 9" MR) . (317)

Iz I~— E=2(r +1-1)n

This can be used as follows. By linearity again,

2(r+{-1)n-1 A 00 & 0
hrn—l z, E a 2 ] - hrn 1 [ ) Z a 2 ] - hrn~l [ Z E
k=(r+{-1)n k=(r+{-1)n k=2(r+{-1)n
so that with (3.17) and (3.10) (for the case s = n ),
2(r +L-1)n -1
max | h,, { z M a; 2F ’ | < (n2 +1) M(R) .(3.18)
Iz [=R k=(r+l-1)n
Using in succession again the linearity of the operator A, ;, the identity of (3.2),
and (3.4), we obtain
2(r+l-1)n-1 n-1 r+l-2
. k . -
hrnvl 2, E a z ] = 2 Z ak+(r+k+l—l)n hrn-l(z ’zk+(r+)\+l e
k=(r+{-1)n k=0 X\=0
n-1 r+l-2

= 2 Y Gt 2 Balz™)
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n-1 r-1i k4 rn‘;l\—Z
= Z E ZRTvR }_J Cu,r (>\ + l) a; +(r +X4-{-1)n
k=0 y=0 A==0

Applying Cauchy’s formula and the bound of (3.18) to the above expression gives

rrl-2 n 2% + 1M (R
I )‘go Cu,r()‘+1)ak+(r+ki-l~l)n I < L Rk+}un( ) ! (3'19)

forallk:O,l,"',n—1;U=0,1,"’,"‘1-

Suppose we set

r+1-2
Z Cu,r ()‘ + 1) U (r42+l-1)n =" Bk pu (3'20)
A==0 ,

fork =0,1, - n -1;v=0,1,,r -1, where from (3.19),

< (n2+)M(R)

| tepn | < ; (3.21)
Rk+:n

On summing both sides of (3.20) with respect to v and using the identity of (3.7),
we can write

2(r +1-1)-1 r-1
ak+jn = S #k,u,n ’
J=r+l-1 v=0
so that
2(r +1-1)-1 r-1
E a’/:+jn l S 2 l/‘k,u,n I
J=r+l-1 v=0

Applying the upper bound of (3.21) then gives

2(r+l—l)—l r n23r+l A{ R
Y Gy | < ( _k) U (3.22)
J=r+l-1 R
forallk =0,1,,n-1,alln >1.

We now state a result which is implicit in the work of Szabados [1].
o ,
Lemma 3 ([4]). If g(z) = Y apz* is an element of A 1C, and if, for each
k=0

positive integer s and each R with 1 < R < p**! | there is a constant M(R)

such that
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|5 g | < ZOHUMR) oy ot alie a
=, R
(3.23)
then
fm |a Il/n<{R”1/2;£f3=1; }<1. (3.24)
Jm o, = UR-Be™1) yrg 5

Lemma 3 can be applied as follows. As f (2), by hypothesis an element in
A1) g necessarily in A;C , and as (3.22) holds, then (3.24) of Lemma 3
with s = r + { - 1 gives that

im |a, |V <1 . - (3.25)

This last inequality ensures, as in [4], that f (z) can be analytically continued
from |z | < 1into a larger circle. Let 7> 1 be the mazimal radius for which
[ (z) is analyticin |z | < 7, so that f (2) has a singularity on |z | =7.
But, by Theorem D, the sequence (2.6) can be bounded in at most r + [ - 1 dis-
tinct points in |z | > ﬁ”'(l/') . As the hypothesis of Theorem 1 ensures that
this sequence is uniformly bounded on every closed subset of | 2z | < p't(t/r) , 1t
s evident that p < 7, showing that f (z) € A ,- U

To conclude, we mention some open questions. It would be interesting to
see If similar converse results hold for lacunary interpolation in the roots of unity,
or for Rivlin’s case [2] of I, - convergence. Morcover, the above proof of
Theorem 1 depends on the use of Saff and Varga's Theorem D. Is it possible to
prove Theorem 1 without the use of Theorem D?
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