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Summary. Let @: €"— " be Fréchet differentiable, and let the equation
X =d(x) ()

have at least one fixed point. We consider k-step stationary iterative meth-

ods
Yoni =Ho PV ) F Yoy o Y MK, (2)

with uy+p, +...+p,=1. Using results for an affine mapping @: € — ™,
it is proven that (2) may converge locally even in cases where the usual
iteration x, =®(x,,_,) belonging to (1) diverges. These results are extended
to nonstationary methods of type (2) and to “cyclic™ mappings.

Subject Classifications: AMS(MOS): 65H10; 65F10; CR: G15: G L.3.

§ 1. Introduction

Let ¢: C*—C" be a Fréchet differentiable function having at least one fixed
point x, i.e.,, there exists an xe C" satisfying

x =P(x). (1.1

I« analogy with certain k-step stationary iterative methods for lincar systems,
which have been investigated by Kublanovskaya [7], Nicthammer and Varga
[10-12] and others, one may consider iterations of the form

Vi = P )l Ve o H W Ve m=k k10, (1.2)

where v, y,. ...,y _, arc given starting vectors in € and where g, gy p,
are fixed complex numbers which are assumed to satisfy

Mo+ 4+ ot =10 #0040, (1.3)
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The above guarantees that the limit of any convergent scquence {y,}. generat-
cd by (1.2), is a fixed point of @. We remark that iterations of the form (1.2)
have been considered by Gekeler [2].

If we let #,:=@(y,,_,). then y, in (1.2) is the result of an averaging process
Of the VECLOTS Tpyu Voo yo e s Y — i With weights g, . “Avcraging iterations”
of a similar type have been considered by various authors (cf. the review paper
of Mann [8]). Their rclationship to the iterative methods of the form (1.2) is
described in Gutknecht and Kaiser [6]. In general, all preceding iterates
Voo e+ Ve arc used in these iterations. As pointed out in Mann [8], the aim is
“the construction of generalized iteration procedures which sometimes succeed
where ordinary iteration fails™. The usual setting is where one considers a
compact convex set E in a Banach space with ¢ a continous mapping of E
into E. Under the assumption that @ is “nonexpansive”, Le., |P(x)—PWI = lx
—y| for all x, yeE, various results on global convergence in E can be proven.
However, since these global convergence results for nonexpansive mappings
extend the well-known results for strictly contractive mappings only slightly,
there usefulness is very limited; they are not applicable in many important
problems arising in applications.

We restrict ourselves here to the finite-dimensional Banach space C", but
we only assume that there exists a fixed point x of the continous Fréchet
differentiable mapping @ such that | is not an eigenvalue of @'(x); this implies
that there cxists a neighborhood U of x such that I —& is injective in U, ie. x
is the unique fixed point in U. Morcover, we only aim at local convergence.
But this cnables us to treat expansive operators, a fact quite important for
practical applications. The main ideca is as follows: Associated with iteration
(1.2). there is a new opcrator @: C*"— C*", depending on ¢ and the parameters
Hor --- My such that x:=(x, ....x)eC*" is a fixed point of @, and such that the
iteration (1.2) is the ordinary iteration

Yo i =P(Y_ 1) (1.4)

for ®. For a suitable choice of the parameters, it is often possible to make @
strongly contractive at x, when @ is expansive at x. When @ s itselfl con-
tractive, the iteration (1.2) may still be very uscful because of a better rate of
convergence.

In this paper, we first give in §2 a short account of part of the lincar
theory. Then, in §3, by applying Ostrowski's Theorem [15, Thm. 10.1.3; 16,
Thm. 22.1] and the corresponding result on the rate of convergence [15.
Thm. 10.1.4], we casily relate the nonlincar iteration (1.2) to a lincar one, thus
obtaining, as in Gekeler [2], a local convergence theorem from the (global)
convergence theorem of the linear theory. In §4, this local convergence result is
extended to nonlinear asymptotically stationary k-step iterative methods of the

form
DMy, ™y e mo=k ko (1.5)

! m

o m ,
v‘m‘ "“(i d)(\'m

with
P ™ = O Rk (L.6a)
and with
gy, 1=0000 ko e # 0, i, 0. (1.6b)
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In §5, assuming that @ is a contraction and that the coeflicients 1y (or g™,
respectively) are nonncgative real, we prove the global convergence of itera-
tions (1.2) and (1.5).

In §6, we study the application of these nonlinear iterative mcthods to
weakly cyclic (of index v) systems of equations,

- Some of the results given in this paper, in particular the convergence
theorems in §§4-6, arc generalizations of results of Gutknecht (4] who, for a
special function @ appearing in Theodorsen's integral cquation for conformal
maps, studied appropriately chosen nonlincar 2-step methods. On the other
hand, in Gutknecht and Kaiser [6] some of our results are cxtended to a
Banach space setting.

Finally, in §7. we include cxamples of applications of the foregoing
theory.

§ 2. Background Material from the Linear Theory

Our local convergence results are heavily based on known convergence theo-
rems for the lincar version of iteration (1.2), i.e.. the k-step formula

Vi =T Y + Oy ¥yt py Yoo m=k k41, (2.1)
(Ho+py+ .4, =1)

where T is an n x n matrix whose spectrum o(7T) does not contain 1, so that the

linear system
x=Tx+c¢

has a unique solution x. Associated with (2.1) is the rational function

HoZ
1= - (2.2)
r@ l—pyz— . —p 2

which will be used to characterize the convergence behavior of (2.1).
- The appropriate mecasure for the asymptotic (lincar) rate of convergence of
an iteration method, such as (1.2) or (2.1), 1s the lincar root-convergence factor

K:= sup mll.;'m—.rll"“, (2.3)

YOueeis Yo - Mt—e
where the starting values Yos s Vi are restricted to values for which con-

vergence takes place (Ortega and Rheinboldt [15, Def 9.2.17). The root-con-
vergence factor of a fixed convergent sequence, lim v —xI'™, is independent

L
of the norm used in " [15, Thm.9.2.2], and it is always at most as great as
the quotient-convergence factor Tim (v, = xU/ly, = x1]. which is norm-
dependent [15, Thm. 9.3.1], me

The lincar &-th order difference cquation (2.1) can be transformed as usual
into an equivalent first- order difference cquation
Yo =LY, [ tpugc,  m=k k+1. ... (2.4)

- o' M
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where T is a kn x kn matrix, given by

(o THp b gl oy 1 ol
I 0 0 0
T:=T(T.p):= 0 | 0 0 1. (2.5)
L 0 0 . 1 0 _
and where
You (
' 0
yo=| Tl e=] | (2.6)
ym—k&l ()

If (2.1) converges to x=(I —T) ‘¢, then (2.4) converges to x:=(x, X, ... x)".
Now, as is well known in the convergent case [20] (and in fact is readily seen
from the Jordan canonical form of T), the linear root-convergence factor of

method (2.4), i.e, _—
k:=sup lim [y, —x['", (2.7)

Vi M=

is cqual to the spectral radius p(T) of T. Here again, k does not depend on the
norm chosen in C*". In particular, if we choose the norm such that

ly,—xll= max |y,_;—xI
05jsk—1
(where on the right-hand-side |||l is any norm in C"), then it is clear that K is
cqual to the rate k defined by (2.3) for method (2.1) (a detailed proof was given
by Voigt [21, Thm. 2.3]). We restate the above in the form of

Lemma 1. The linear root-convergence factor & of the k-step formula (2.1) is
equal to the spectral radius of T(T.p).

On the other hand, the spectrum of T(T,p) is related to the spectrum of T
by the following well-known result (¢l e.g., Bittner [17. Rjabenki and Filippow
[18]).

Lemma 2. If 1, (i=1.....,n) are the cigenvalues of the matrix T, then the cigen-
values of T(T.p) of (2.5) are the nk zeros of the n polynomials q(A):=yg(t;: A

where
G A =g+ At A A g Aktr = Ak (2.8)

which is related to the function p of (2.2) through

1
gt 2) = A* '{r- - ] 2.9
1T 2) = p p(1/)
( Multiple eigenvalues appear according to their algebraic multiplicity.)

Of course, it 1s unrealistic to assume that the cigenvalues of T are known.
(In fact, in this case, a nonstationary I-step Richardson itcration converging i
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at most a1 steps is well known [20].) However, it is recasonable (o supposc that
we know a priori some set S containing the spectrum of T

Conversely, we may pose the following questions: Given a k-step formula
(2.1), can there be determined a set S i @ such that p(T) </ if o(T)<S? In
addition, can there be determined a subset S, of § such that p(Mys1p<1if
a(T)eS,?
" Indeed, with

[)":z{:ed‘: lzl<n}. D :={zeC: |z| <1y}, (2.10)

"

and with p as in (2.2). let us define the point set

S(p):=C\{1/p(D,)) ={zeT: Liz¢p(D,)}, (2.11)
and, for 4> 1, its subscts

S, (n):=C\{1/p(D,)} ={zeT: 1;z¢p(D,)}. (2.12)

(Without further assumptions on p it may happen that S(p) is empty.) Then,
the following thecorem answers the questions posed above:

Theorem 1. Let & be the root-convergence factor (2.3) of the k-step formula (2.1).
and let p be the associated function (2.2). Then there holds:

a) If a(TYSS(p), then k<1 and the iterative method (2.1) converges for
arbitrary starting values yo,.... ¥, _y-

b) If a(T)ES,(p) for some n>1, then

kS 1/n., (2.13)

and if there is at least one eigenvalue of T on the boundary of S,(p). equality
holds in (2.13).

Proof. We omit the proof of part a) since it is similar to the following proof of
the first half of part b). By virtue of Lemma | and Lemma 2, incquality (2.13)
will be established if we can show that

g(r; )+0 if teS (p) and il [A>1/n. (2.14)

since this implies that all eigenvalues of T(T.p) lic in 13,,,,. e, p(T(T pN S 1.
Now, in fact, by the dcfinition of S, (p), we have 1/p(1/2)¢S,(p) il 121> 1/y. Le.,
1/A€D,. Hence, (2.14) is an immediate conscquence of relation (2.9).

We next assume that t, is an eigenvaluc of T on the boundary of S,(p).
Because 1/p is rational, interior points of D, arc mapped in interior paints of
(1/p)(D,), the complement of S, (p). Therefore, there is a {, on the boundary of
D, such that t, =1/p({,) and. by (2.9), ¢(1,; 1/{,)=0, i.c. 2, =1/{; is an cigen-
value of T(7, p) having modulus 1/n. This implics & =1/, as claimed: 0O

We can ask whether the regions S(p) and S, (p) can be deseribed i termys of
o - gt For this, let the function p of (2.2) be holomorphic and univident
some ncighborhood of the closed unit disk 13, (i.c.. in the notation of [12]0 fet
p be an Euler function), and let us call

~a
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fi:=§(p): =sup{n>1: pis univalent in D} (2.15)

its maximal extension. Then, the image of the unit circle ¢D, is a simple closed
curve which separates (1/p)(D,) and its complement, i.c.. the image of D, is
the boundary of S(p). For the same reasons, it follows that for [ <y <ij(p). the
image of the circle with radius n under the mapping 1/p is the boundary of
S,(p). Examples will follow in Sect. 7. As a consequence, there holds the

Corollary. If p is holomorphic and univalent in some neighborhood of the closed
unit disk, then for | <nS#(p). equality holds in (2.13) if and only if there is at
least one eigenvalue of T on the boundary of S,(p).

§ 3. Local Convergence of Stationary k-Step Methods

In view of the linear theory cited in § 2, the following local convergence result
for iteration (1.2) is now but a simple application of Ostrowski’s theorem and a
related result on the linear rate of convergence:

Theorem 2. Let p be of the form (2.2) and let o(®'(x)) S S, (p) at some fixed point
x of @. Then the nonlinear k-step stationary iterative method (1.2) converges
locally near x, and the linear root-convergence factor « is equal to p(T(®'(x), p))
and satisfies

KS1/n. (3.1)
If pis univalent in some neighborhood of the closed unit disk, then equality holds
in (3.1) if and only if there is an eigenvalue of @'(x) on the boundary of S, (p).

Proof. In analogy with the equivalence between (2.1) and (2.4), we write (1.2) as
4 nonlinear first-order difference equation,

Yo =¥y, ). m=kk+1, .., (3.2a)
where
TP SR K o TVS R oy (P P S SRR o T Y
Wy, )= Yot C (32b)
. - Yk
Since
¥'(x)=T(P'(x), p) (3.3)

the assertion follows from Ostrowski's Theorem [15, Thm. 10.1.3; 16,
Thm. 22.17. the associated lincar convergence theorem [15, Thm. 10.1.4]. Lem-
ma |, Theorem I, and its Corollary. [

§ 4. Local Convergence of Asymptotically Stationary k-Step Methods

[n order to prove a local convergence theorem for the asymptotically sta-
tionary method (1.5) satislying (1.6), we have to replace Ostrowski's Theorem
by the following more powerful theorem due to Perron. For notation, D7 =D,
x D, x ... x D, where Dis defined in (2.10).
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Perron’s Theorem (17, Thms. 5 & 7]. Let A be a complex nxn matrix, and let
(for some n>0) the functions y,: Dy =" m=01, . satisfy the conditions
(&) there exists a constant K >() such that U)’,,.( )I[ SK |zl for all ze D" and

all m=0, 1,
(b) X..,(-)/H~““‘0 as 1z =0 and m— >

Then, the (trivial ) null solution of the recursion
zm::A:m»l +Zm(:m —1)

is stable (ic., every solution {z.} generated from a sufficiently small starting
vector = tends to 0) if p(A) <1, and it is unstable if p(A)> 1.

Remark. Perron used the {-norm in D} and the [, -norm in €", but this is not
essential, of course.

In view of assumptions (1.1) and (1.6) and by introducing the errors ¢, i =y,
—x, iteration (1.5) may be written in the form

=1 [P+ e ) =)+ M, M, (4.1)

In order to make use of the Fréchet differentiability of @ and of (1.6b), we
write this as

Co :[“0 ¢l('¥)+/l!) Coe_ +/12 Cm-2 +... +“k Co & +Xm(em~ t)‘ (42)
withe, ,:=(cI_,.....el_)7 (in analogy to (2.6)) and

X (1) = [(UG" = 1) @°(x) + (1™ = )] g
+(US =) hy 4+ = ) by
+ U [(x +h)—d(x)—P'(x) h,], (4.3)

where hi=(h{,...,h])" with h,eC" arbitrary (j=1,..., k). By the Fréchet differ-
entiability of @, the last bracket in (4.3) is o(|lh,||) as h, =0, so obviously

Iz (W1 =0(hl) as h—=0, (4.4)
uniformly in m, and
[l xm (Bl
—0 as m—-o, h—0. (4.5
Ih ’

Writing (4.2) as a system (similar o (3.2), thereby introducing g, (h):
=(r,(h)7.07,...,0")"), makes clcar that Pcrron’s Theorem can bc applicd,
showing thate, =y, —x =0 (¥m) is a stable solution of (4.2). We thus conclude:

Theorem 3. Let p osatisfy the assumptions of  Theorem 2. Then an associated
iterative method (1.5) satisfying (1.6) counverges locally near x.

One can show by a detaded analysis that also inequality (3.1) for the root-
convergencee factor still holds [6].

o my
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§ S. Invariance of the Contraction Property

In this section. we assume that @ is a contraction, but we drop the Fréchet
differentiability of @. More preciscly, we assume:
(i) There is X €@ and an Le(0, 1) such that @: X — X is continuous and

lo(—d@ISLiy—yll  (Vy yeX) (5.1

(i) the weights 4™ in iteration (1.5) satisly (1.6a), (1.6b), and are non-
negative real numbers;

(iii) X cC"=R?" is convex.

Assumption (i) is well known to imply that there is exactly one fixed point
x of ® in X and that the sequence {x,}, generated by x,:=®(x,_,) with an
arbitrary x,€ X, converges to x, at least with the lincar rate L.

One can show that iteration (1.5) and, a fortiori, iteration (1.2) can be
viewed as a contraction also. In particular, global convergence is guaranteed.

Theorem 4. Under assumptions (i), (ii), and (iii), the sequence {y,} generated by
(1.5) with arbitrary starting values yq,....y,_, in X, converges linearly to the
unique fixed point xeX of . '

Proof. First, if vg.....v,_€X, then ®(y,_,)eX, and y,eX also, since y, is a
weighted mean of k+ 1 points in X, which is convex. By induction, y,eX for

cvery m.
Let ¢, : =1y, —xl. Using (5.1). we conclude from (4.1) that

0Se, S Lty A+ HM ep g+ A1 ey (5.2)

If the inequality sign for vectors is understood componentwise, we may write

o] | ¢m Em_ 1
< : LV A P (5.3)
Of Lem_wen Lok
where
LA
| 0 ... (
M. = .
I ;
0 ol 0

is a real k x k matrix.

Obviously, M™ is a companion matrix of the type (2.5). but with n=1.
Hence, its cigenvalues 4, are related to the cigenvalue L of the I x I matrix L
by ¢, (L. 4,) =0, where ¢,, is defined by

|
PRSI
qm(r ) ll(l / T [,m( 1 /’/1)

()
Ho <

¢} Jofl R -
Pml2) =gl s =



k-Step lterative Mcthods for Solving Nonlincar Systems of Equations 707

(cf. (2.9) and (2.2)). Now, lor |4] 21,

I 1A LG ™ Pl e ™M M) T

P12 il izt
since the bracket has modulus at most 1. Therefore, |, (L. 2l 2 p" [V = L] > 000
2l 1. te, all cigenvalues of M™ and of M:=lm M™ lic in D, (and cannot
decumulate at a boundary point of D). By a well known result on matrix
norms, there cxists a norm [-|* in R* such that in the associated operator
norm, |M|* =1-38<1, which, by thc continuity of the norm, implics that
M|~ <1 =8/2<1 for sufficiently large m. From (5.3). it is then clear that
£, —0. (Defining ,,: = [y,, — ¥, |l instead, onc likewise shows that, for sufficiently
large m. the asymptotically stationary version of iteration (3.2) defines a con-
traction 1n a suitable norm.) [

§ 6. Cyclic Systems

We call the system of equations (1.1) weakly eyclic of index v, if it is of the
form

\.l (p‘().\)

L2 1

\ = wzf.\’ ) . (6.1)
X" P (x"h

where xe @, and where n=n, +... +n_. Systems of the form (6.1) were treated
by Ullrich [19]. The casc v=2 came up in Gutknecht [4]. and the lincar case
with v=3 is covered by Niethammer, de Pillis, and Varga [13]. The Fréchet
derivative of @ is then an nxn weakly cyclic of index v matrix [20, Def. 2.3,

p. 39]

0 o - 0 @ (x")]
@5 (x") 0 . .

P(x)=| 0  @4(xh) 0 : ‘ (6.2)
. 0 eLx"h 0

By noting that [@'(x)]* is block-diagonal, i.c,,

[@'(x)]" =diag(B,.B,.....B)). (6.3a)

with entries
B =@ix’" ") @) T () @lxt ) L), (X7) (6.3b)
(j=1.....v). which all have the same nonzero cigenvalues (since only the order

of the factors in (6.3b) depends on ). one concludes that the nonzero cigenval-
ues of @(x) are v-th roots of cigenvalues of B, (or any other B). In fact,
Romunovsky's thecorem {20, Thm. 2.4, Exercise 12, p.45] says that the spee-
trum of @(x) is v-fold (... with respect to the angle 2a/v) rotationally sym-
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metriciabout 0. Hence, if @'(x) is regular,
(@' (x)={1eC: 2ea(B,)]. (6.4)

(Otherwise, 0 s an additional cigenvalue of ¢'(x) and of at least one B}.)

Our k-step methods for solving (1.1) can be modificd in two ways to take
account of the cyclic of index v structure of (6.1). First, with the usual notation
(frof) ) =L(/;(0), (6.1) can be reduced to the equation

X' =(@e@,00,_0...o9) (X'), (6.5)

which contains only x'. (In view of a later application, we prefer this equation
to x'=(p,o@,_°-..o¢,)(x").) Once x' is computed, the other subvectors
x% ... x* can be directly computed from (6.1). Clearly, (6.5) is itsell a fixed
point equation, and the Fréchet derivative of the operator on the right-hand
side of (6.5) is exactly B, whose nonzero cigenvalues are v-th powers of
eigenvalucs of @'(x). Hence, we may apply a k-step method of the form (1.2) or
(1.6) to (6.5). The relevant condition on the related function p is now

(2: dea (P (N} S,(p) for some ne(l, q(p)]. (6.6)

Clearly, if p(@'(x)>1, p(B}) is even larger, but this does not imply that the
convergence factor of the k-step method associated with (6.5) is necessarily
worse than the convergence factor of the method associated with (6.1). In fact,
in some important examples (cf. §7), this convergence factor is the v-th power
of the one for the latter method, and hence better, even though the com-
putational effort in one step costs about the same for either method.

Our second proposal is based on applying a k-step method of the form (1.2)
or (1.6) to the whole system (6.1). However, since we know that the spectrum of
@' is v-fold rotationally symmetric, we restrict our attention to functions p in
(2.2) which (for some n>1) map D, onto a rcgion with this symmetry: these
functions are of the form

p(z)= T (6.7)
l—p, 2" — 5,2 ‘-—...—;t,(z"
with k =vl. Application of the associated k-step mcthod to (6.1) yiclds the
itcration

y"n:—;“O(pl(.v:t—-l)-*‘uvyl‘n«v*- +ll“"\"|"”l“

yi: :“0 (pl(«vvtn— l)+luvy:1 - ¥ + +Aulv ‘31 oy XA (68)
Vo' :l‘o(P\-(.V::—ll)‘*‘llv.\':p N SRR S [V Vi in

(m=Iv. lv+1,...) Letus consider v steps of iteration (6.8) with iteration index
mom4 1. ..m+v -1 From ecach of the corresponding iteration  vectors

v _we extract one subvector in the following way:

m‘,mvl""‘.‘vnw\ 1

v




k-Step herative Methods for Solving Nanlinear Systems of Equations 709

‘l v — ’ l ‘
}m' =Ho ‘/’|(}’.\.. I)+ll\' .vm v +.. +/llr .vm» (K%
2 ! 2
."mt IR LT ‘PZ(V"")'{ /l‘_.\'"“ 1 \-* '¥I‘l\~.‘mc [ (69)

. . U | . W
TR /l()w\r(.‘n|4\- 2’%,‘\'-‘:" l+"'+/ll\-.\mtv |

(m=Ilv.Iv+v, ...) It can be scen directly from (6.9) that this sequence of
subvectors can be computed without using any other subvector of the iterates

Vs Vg 1v o2 Vo v 1- Thus, it becomes clear that once the vectors
1 2 R -
_‘m . j"' _V,,,__j‘., 1. --'Q)‘”'__jv,' - 1 (I"' I, ...,1)
arc known, one sweep through (6.9) produces
LU SRR L (6.10)

Now. let us assume that, under some assumptions on the function p of (6.7) and
on a(®'(x)), Theorem 2 predicts a certain lincar root-convergence factor k< 1/n
for iteration (6.8). Then, one iteration of (6.9) has a asymptotically the same
effect as v iterations of (6.8), r.e., under the same assumptions on p and a(P'(x))
as above, iteration (6.9) converges locally with a root-convergence factor
"< 1/n". Remember here that one iteration of (6.9) nceds about the same
computational effort as one iteration of (6.8). We have thus established

Theorem 5. Under the assumptions of Theorem 2, if p is of the special form (6.7),
the iteration (6.9) for the cyclic system of index v (6.1) converges locally and with
the linear root-convergence fuctor k"< 1/n".

In analogy with Theorem 3 the result remains valid for any nonstationary
variant of (6.9) satisfying (1.6), and it is also clear that the global convergence
result of Theorem 4 still holds.

The iteration (6.9) has the important advantage that the function ¢, is
evaluated at y&;}_, (which is supposed to converge to x’~'). In contrast, in the

k-step method for (6.5), ¢; is evaluated at
W= 0@ 50 005) (1)

and though this point is also supposed to converge to x/=', it may be far from
x/=! since $7' can be thought of as a result of j—2 applications of the map
¢, which may be expansive.

§ 7. Examples

Since we do not know the fixed point x of ¢, we know neither @'(x) nor the
cigenvalues of @'(x). But let us assume that two compact sets A< € and Qc €
arc known with xeA and with a(@ (X)) Q for all Te.1. Then, Theorem 2 says
that if there is a p of the form (2.2) such that Q< S(p). our steration (1.2)
converges locally to xoand if Q€5 (p) for some 1> 1. then the convergence
factor w is at most /. Since all further considerations are made with respect
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to the set €. it makes no difference whether the nonlinear iteration (1.2),
together with the cigenvalues of @'(x), or the linear iteration (2.1) and the
cigenvalues of T, are considered. Thus, we can use the results in [12] where
(2.1) was extensively examined.

For deciding whether Q< S(p) for some p, it is useful to describe S(p) and
S (p) for some specific functions p of the form (2.2). In the case k=1, we have

p(z)=po /(1 =(1 —pp)z), e, pis a linear fractional mapping which is univalent
fnr l<p<a. lt cun be directly seen that S(p) is the disk with center

d:=1—1/p4, (7.1

and radius 1/)1,] (which has | on its boundary); S,(p) is thc concentric closed
disk with radius 1/(]y,l). Conversely, if D(J, p) is a closed disk with center
deC and radius p>0 such that QS D(d,p) and 1¢D(d,p), then we can look
for a p of the form (2.2) with k=1 such that S,(p)=D(9,p). From (7.1), we
get pio:=1/(1 =9); i.e., method (1.2) with k=1 and this value of u, converges
locally. The convergence factor is at most p/|1 —d| (namely, the quotient of the
radii p of D(4,p) and 1|yl of S(p). Of course, as there are in general an
infinite number of such disks D(3, p)2£2, then one wishes to minimize the con-
vergence factor p/|1 —&]. In a different context and with a slightly different nota-
tion, this was done in Opfer and Schober [14] for the case where Q is a line
segment or an ellipse.
If k=2,

l—p z—u,z* 1 I
(Ip)()=— 22 (—-u. I‘zz) (7.2)
HyZ Ko

is a mapping of the Joukowski type. The following results have been derived in
[12]: p is univalent in a neighborhood of the unit disk iff |u,| < 1: furthermore
i(p) = 1/lu,] and S(p) is the interior of an cllipse E with 1€E and foci o, # with

a, f=(—p, i21/:-;—1;)/;10. (7.3)

For 1 <py<#., the region S (p) is the closed interior of a confocal ellipsc E,
within E. and S.(p) is the interval between the foct « and fi. If the sct E s
given, the value of 7 has to be determined as follows:

If = is an arbitrary point on E,, solve the quadratic cquation (=1/p(z) for
z. There is a solution with | <|z| £n which yields n =|z|.

Conversely, let us assume that there is an cllipse E’ such that the closed
interior E' contains © and 1¢E. Then, we wish to find parameters gy, fiy. it
such that for the corresponding p. there holds E'=S (p) for some n with
I <ny<a(p). Let 2 and f§ be the foct of E' and set

l—at)/1 - )

()’:-:(‘/ aty/1-f) , (7.4)
[} —x

so that ' =1/0 . Let 00 be that value with [0f> 1. Then with 3 =(a — 92,

o =(a+ f§)/2, we get (see [12], formula (7.3)

2 —-29 -1
Ho = Fe= a0 T o

(1.5)
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The value of i can be determined as mentioned above. [t should be noted that,
for all confocal cllipses £ with 1¢ [, we pet by (7.5) the same iteration
parameters g, i, ;o2 only the value of g will be different.

The set Q represents our information on the spectrum of T or @'(x),
respectively. If @ =S (p) for some p of the form (2.2). then from {127 i follows
that with respect to this information, the resulting convergence factor is mini-
mal, i.c, we get an optimal asymptotic rate of convergence. In the linear positive
definite case, i.e, ©(y)=Ty+c with a symmetric matrix T such that I -T is
positive definite, Q is an interval on the real line not containing 1. Here, Golub
and Varga [3] have shown that the weights pf™, 0<1<2 =k, derived {rom the
recursion formula for appropriatcly shifted Chebyshev polynomials yicld a
mcthod with optimal average rate of convergence [20]. For the related com-
plex lincar case where © is a complex interval, Wrigley [22] and Manteuffcl
[9] have considered the corresponding method resulting from suitably shifted
Chebyshev polynomials. There results a method of type (1.5) with k=2, which
however has not an optimal average rate, but only an optimal asymptotic rate
of convergence (as the stationary mcthod described in [12] and outlined
above).

Numerical results on the application of the 2-stcp method associated to a
degencrate ellipse E with foci +ia and of the related iteration (6.9) (which
happens to be a nonlincar SOR iteration) to a highly nonlinear system of
between 16 and 128 equations are reported in [S. Examples 2.1 and 3.1]. In
this application it turned out that both methods not only behaved as predicted.
but that the effect of the nonlinearity on the convergence speed is small, except
that the iteration may not converge at all if the initial approximation s t0o bad.

References

I. Bittner, L.: Uber ¢in mchrstufiges Verfahren zur Ldsung von lincaren Gleichungen. Numer.
Math. 6, 161-180 (1964)

2. Gekeler, E.: Uber mehrstufige Herationsverfahren und dic Ldsung der Hammersteinschen
Gleichung. Numer. Math. 19, 351-360 (1972)

3. Golub, G.H., Varga, R.S.: Chebyshev Semiiterative Methods. Successive Overrelaxation Herative
Mecthods, and Sccond Order Richardson Iterative Methods, Numer. Math, 3. 147- 16K (1961)

4. Gutknecht, M.H.: Solving Theodorsen's Integral Equation for Conformal Maps with the Fast
Fourier Transform and Various Nonlincar Herative Mcthods. Numer. Math. 36, 405-429 (1981)

5. Gutknecht, M.H.: Numerical Experiments on Solving Theodorsen's Integral kquation for
Conformal Maps with the Fast Fouricr Transform and Various Nonlincar lierative Methods.
SIAM J. Sci. Stat. Comput. 4, 1-30 (1983)

6. Gutknecht, M.H., Kaiser. A.: lterative k-Step Methods for Computing Possibly Repulsive Fixed
Points in Banach Spaces. J. Math. Anal. Appl. (To appcar)

7. Kublanovskaju, V.N.: Application of Analytic Continuation in Numerical Analysis by Means
of Change of Variables. Trudy Mt Inst Steklov 830 145-1K5 (1959)

& Mann, R.W.: Averaging (o Improve Convergence of Herative Processes. lumlmn.n! Anlysis
Mecthods in Numerical Analysiss Lect Notes in-Math, 700 pp 169 179 Beelin, Hewdelberg,
New York: Springer 1979

9. Manteuffel, T A The Tehebyehey Trevnton for Nonsymmetoe bnear Systems Numer. Math,

28, 307-327 (1977)

Nicthammer, W.o Hecattonsverfabizen and allgememe Buler-Verfuhren, Math. 70 102, 288317

(1967)

1




-

712

22.

M.H. Gutknecht et al.

. Niethammer, W.: Konvergenzbeschleunigung bei cinstufigen Iterationsverfahren durch Sum-

micrungsmethoden. lerationsverfahren,  Numerische  Mathematik, Approximationstheorie,
pp. 235-243. Basel: Birkhiiuser 1970

Niethammer, W.. Varga. RS.: The Analysis of k-Step lerative Mcthods for Lincar Systems

from Summability Theory. Numer. Math. 41, 177-206 (1983)

Nicthammer, W.. de Pillis, 1. Varga, RS.: Convergence of Block Iterative Mcthods Applicd to

Sparse Least-Squares Problems. Lincar Algebra Appl. 58, 327-341 (1984)

. Opler, G.. Schober, G.: Richardson's lteration for Nonsymmetric Matrices. Linear Algebra

Appl. 58, 343-361 (1984)

. Ortega, J.M., Rheinboldt, W.C.: lterative Solution of Nonlinear Equations in Several Variables.

New York: Academic Press 1970

_ Ostrowski, A.M.: Solution of Equations and Systems of Equations. New York: Academic Press

1966

. Perron, O.: Ober Stabilitit und asymptotisches Verhalten der Lésungen cines Systems end-

licher Differenzengleichungen. J. Recine Angew. Math. 161, 41-64 (1929)

. Rjabenki, V.S.. Filippow, A.F.: Uber die Stabilitit von Differenzengleichungen. Berlin: VEB

Deutscher Verlag der Wissenschaften 1960

. Ullrich,‘Chr.: Ober schwach zyklische Abbildungen in nichtlincaren Produktriumen und cinige

Monotonicaussagen. Apl. Mat. 24, 209-234 (1979)

. Varga, R.S.: Matrix Itcrative Analysis. Englewood Cliffs: Prentice Hall 1962
21,

Voigt. R.G.: Rates of Convergence for a Class of lterative Procedures. SIAM.J. Number Anal.
8, 127-134 (1971)

Wrigley, H.E.: Accelerating the Jacobi Method for Solving Simultancous Equations by Cheby-
shev Extrapolation when the Eigenvalues of the Iteration Matrix are Complex. Comput. J.

6, 159-176 (1963)

Received August 12, 1985 / September 27, 1985




