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THE RIEMANN HYPOTHESIS
AND THE TURAN INEQUALITIES!

GEORGE CSORDAS, TIMOTHY S. NORFOLK AND RICHARD S. VARGA

ABSTRACT. A solution is given to a fifty-eight year-old open problem of G. Pélya,
involving the Taylor coefficients of the Riemann £-function.

1. Introduction. The purpose of this paper is to solve a fifty-eight year-old problem
of Polya [P, p. 16], related to the Riemann Hypothesis. This problem may be
described as follows. Starting with Riemann’s definition of his £-function (cf.
Titchmarsh [T, p. 16], in a slightly different notation), i.e.,

AV S o P Y (i l) ( l)
(1.1) £(iz):= 2(2 4)77 r >t ¢ z+ 5,

where { is the Riemann zeta-function, then £ is an entire function of order one and
admits the integral representation (cf. [P, p. 11])

(1.2) g(g) - st°° @ (1)cos(xt) di,

where

(1.3) O(r):= io: (2n*m%e® — 3n’ne> )exp(—nime®’).
n=1

(We have dropped the usual factor of 4 in the definition of ®.) From (1.2), the entire
function £ can be written in Taylor series form as

1 x 00 (—1)mBmX2m
9 sl =L e
where
(1.5) b = fow 2m(r)dt (m=0,1,...).

On setting z = —x? in (1.4), the function F(z), defined by

(1.6) F(z)= ¥ (”2'";')"!,

m=0
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is an entire function of order %. If x, is a real zero of £(x/2), then z,:= —xg is a
negative real zero of F(z) and the Riemann Hypothesis is equivalent to the
statement that all the zeros of F(z) are real and negative. Now, it is known (cf. Boas
[B, p. 24] or Polya and Schur [PS]) that a necessary condition that F(z) have only
real zeros is that

b, \’ b, 1 Bruin
(1.7) m(—-—-—(zm)!) >(m+1) @m = 201 (2m + 21 (m=1,2,...),

or equi?alently, that

5 2m— 1\,
(1.8) (b,) > (—2——;”7—1)bm,lbm+1 (m=1,2,...).

(In today’s terminology, the inequalities of (1.8) are commonly called Turan inequali-
ties.)

In 1927, Pélya [P], while studying some fragmentary unpublished notes of J. L. W.
V. Jensen dealing with the Riemann Hypothesis, raised the question of whether or
not the Turan inequalities (1.8) are all valid. Our main result here is that these
inequalities (1.8) are indeed all valid. Our interest in these inequalities (1.8) is very
natural: if one of these inequalities (1.8) were to fail for some m > 1, then the
Riemann Hypothesis could not be true!

The history concerning Polya’s problem of 1927 is very interesting. For nearly
forty years, this problem was apparently untouched in the literature. Then, in 1966,
Grosswald [G1, G2] generalized a formula of Hayman [Hay] on admissible func-
tions, and, as an application of this generalization, Grosswald proved, in the
notation of (1.8), that

7 2
1.9) (b,)* -~ 2m_1b_1?)+1=(”’) 1+0 1 asm — 0.
" 2m+ 1) m logm

As the moments ?)m are necessarily positive (cf. (1.5) and (i) of Theorem A) for all
m > 1, then Grosswald’s result (1.9) proves that (1.8) is valid for all m sufficiently
large, say m > m,, but the value of m, was not determined from this analysis. To
our knowledge, this gap in Grosswald’s solution of Polya’s problem was subse-
quently not filled in the literature.

The delicate nature of the Turan inequalities (1.8) can be seen from the following
calculation. As ®(¢) is positive for all 7 > 0 (cf. (i) of Theorem A), an application of
the Cauchy-Schwarz inequality to (cf. (1.5))

2
A'%l _ {fOO [(2'"?2)/2 (I)(f) . @mt2)/2 (I)(t) d[}
0

directly gives (i)m)2 <b,_ 12),,, . 1» which we equivalently write as

2m+ 1Y\, -
< (m)bm—lbm%vl (m = 1,2,...),

whereas the sought Turan inequalities (1.8) are nearly the reversed inequalities:

2m—1\. &
= (2m + 1)bmvlbm+1 (m = 1,2,...).

~

(1.10)

I

>

It
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In [P], Polya obtained some interesting results that relate the asymptotic behavior,
as t — oo, of @(¢) to the Riemann Hypothesis. In contrast, we focus our attention
on the behavior of ®(r) near ¢ = 0, which requires, in our analysis, a detailed
investigation of ®(7), ®'(¢), ®?(¢), and ®®(¢) for ¢ small. This analysis is carried
out in §3. The various estimates developed in §3, while elementary in character,
enable us to show in §3 that the function

(1.11) K(t)i= [T o(Wu)du  (1>0)

is such that log K(¢) is strictly concave on (0, + o). Having gathered these detailed
calculations in §3, the basic ideas of the proof of our main result are given in §2.
There, it is shown that if

1

(112) )\x3= m

[Jwk@wde (x> 1),
0
then logA | is strictly concave on (-1, + o), from which the validity of the Turan
inequalities (1.8) for m > 2 are deduced. (The case m = 1 is settled numerically, the
justifications for this being given in §4.)

In the subsequent sections, we repeatedly make use of several known properties of
the function ®(z), defined by (1.3). For the reader’s convenience, we state the
following theorem which summarizes some of the known properties of ®(¢).

THEOREM A. For the function ®(t) of (1.3), write

o0

(1.13) (1) = X a,(1),

n=1
where
(1.14)  a,(t):= 7an*(2mn%e* — 3)exp(5t — 7n%e*) (n=1,2,...).

Then, the following are valid:
(i) foreachn > 1, a,(t)> 0 forallt > 0, so that ®(¢) > 0 forall t > 0;
(i) ®(z) is analytic in the strip -7 /8 < Imz < 7 /8;
(iil) ®(¢) is an even function, so that ®C" D0y =0 (m =0,1,...);
@v) for any e > 0,

lim @™ (1)exp[(7 — e)e*] =0
100

foreachn = 0,1,...;
) ®'(t) < 0 forallt > 0,
(vi) al(t) <O forallt > 0, foreachn =2,3,...;
(vii) aj(t) = 0 for 0 < t < ty, and aj(t) < O for all t > t,,, where

1 [15 + /105

(1.15) fyi= 7 S

} = 0.0011334898 - - - .

With the possible exception of (iii), the proofs of statements (i)-(iv) are elemen-
tary and can all be found in Polya [P]. The proofs of statements (v)—(vii) can be
found in Wintner [W].
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The fact that aj(¢) changes sign (cf. (vii) of Theorem A) is important in our
analysis, so we sketch the proofs of (vii) and (1.15). From (1.14),

(1.16) a(t) = —w[8n%* — 30me* + 15]exp(5¢t — me*’).

Now, the quantity in brackets above, a quadratic polynomial in e*, has precisely
one positive zero t,, which is given in (1.15). It then follows that aj(z) > 0 for
0 <t <ty and that aj(¢) <0 for ¢ > 1y, which is the desired conclusion (vii) of
Theorem A.

2. Basic results. Our basic result, Theorem 2.5, gives that the Turan inequalities
(1.8) are all valid, thereby completely solving Pélya’s problem. The proof of this
result depends in part on a large number of easy but lengthy mathematical
calculations (not numerical computations) which might detract from the basic ideas
of the proof. These results (Lemmas 3.1-3.12) have been gathered separately in §3.
In this section, we give the essential ideas leading to the proof of Theorem 2.5.

We begin with Proposition 2.1, which makes use of Lemma 3.12, to be established
in §3.

PROPOSITION 2.1. With ®(t) defined in (1.3), set

(2.1) K(1)= f°° o(u)du (1> 0).
t
Then, log K(t) is strictly concave on (0, + 0), i.e.,
d*log K(t)
2.2 —=r <0 t>0).
(2:2) e (t>0)

Proor. With (2.1), it can be verified that
dtlogK(1) _ (Je0(u) du) @' (Vr)/241 +((/1))"
dt? (/=@ (Vu) du)2

As the denominator of the fraction above is positive for all ¢ > 0 (cf. (i) of Theorem
A), then (2.2) holds iff

(2.3) V(t):= (f @(f)d)q’(f) +(@(W))’ >0 (>0,

(1> 0).

or equivalently, iff
(2.4) tV(t2)=(j;ws@(s)ds)@'(t)+t(€b(t))2>0 (t>0).

But, on setting

(2.5) J(1)= ft°° s@(s)ds (1> 0),
and

(2.6) g(1)i=J()®' (1) + t(®(2))>  (1>0),
then (2.4) simply becomes

(2.7) g(t)>0 (t>0),

which is the conclusion of Lemma 3.12 of §3. O
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We remark that the results established in §3 similarly allow us to deduce that if
(2.8) 1(1):= [°° ®(s)ds (1> 0),
t

then log /(#) is also strictly concave on (0, + o0). This result is, however, not strong
enough for our purposes to deduce the Turan inequalities of (1.8).

A specific elementary property of strictly concave functions, needed in the
subsequent proof, is given in

LEMMA 2.2. Let I be an open (bounded or unbounded) interval, and let h(x) €
C*(I) be strictly concave on I (i.e., h(x) < 0 for x € I). Then, for any four points
a,b,c,dinlwitha<c<d<b,

h(c) —h(a) _ h(b) ~h(d)

(2.9) c—a b—d
If, in addition, ¢ — a = b — d, then
(2.10) h(c)+h(d)>h(a)+h(b).

PrOOF. Let a,b,c,d be any four points of I with a < ¢ <d < b, and with
corresponding points P,Q, R, S on the graph of A, as shown in Figure 1. Since
h®(x) < 0, it follows that

slope( PQ) > slope( PR) > slope(QR) > slope(RS),
whence slope(PQ) > slope(RS), which gives (2.9). If ¢ — a = b — d, then (2.10)
follows immediately from (2.9). O
A special case (m = 2) of a problem of Polya and Szegd [PSz, Part II, Problem

68] is the following lemma. (A more general version of this result appears in Karlin
(K, p. 17])

Q/

FIGURE 1
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LemMma 2.3. Let f,(1), fo(t), ¢1(2) and (1) be continuous and absolutely integra-

ble on [0, + o). Suppose further that f(1)¢,(1) (1 < i, j < 2) and f,(1) (1) (1) Dy (1)
are absolutely integrable on [0, + o). Then,

det{ (;)o 1(Z)¢1(t) dt (3)0 1(’)¢2(I) dl]
(s d (D e0)

sz det{fl(u) fl(U)}de{‘i)l(“) qbl(v)}dudu.
O<u<v<-+oo hHu)  fi(v) oy (1) ¢y(v)
In the proof of the next result, it will be convenient to adopt the following

notation. Let X and Y be subsets of R, and let f be a real-valued function on
X X Y. Then, for x,, x, € X with x; < x,, and for y;, y, € ¥ with y; <,, set

(2.12) f(xl x2):: det[f(xl’yl) f(x“yZ)}.

o f(x2. 1) flxa,02)

PROPOSITION 2.4. With K(t) defined in (2.1), set

(2.11)

(2.13) A= T(—xl?-’ﬂfow K de (x> 1),

where T(t) denotes the gamma function. Then, log A, is strictly concave on (-1, + o0).

Proor. For any real numbers s, 7 > — 1 the classical formula connecting the beta
function with the gamma function gives the identity

s+

u =/“ v (u-w
T(s+r+1) Jo T(s+1/2) T(+1/2)

)t*l/Z

dv.

Substituting the above identity in (2.13), with x replaced by s + ¢ and with
yi= u— v, gives
e Us~1/2 o
Agir = f f .
0 F(S+l/2) o I(t+1/2)

which we write as

t—1/2

K(v+y)dydv,

- 12 J
(2.14) M= [ Ty k) 4
where
w12

2. =) Tarip Rty
(2.15) L/(x) fo r(lr+1/2)K(JC »)d
We also set

i—1/2
(2.16) 0. (y)=K(x+y); G(y)= T(t+1/2)°
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where x, y > 0 and ¢ > - 1. With the notation of (2.12), we next note that Lemma
2.3, applied to the integral of (2.15), can be expressed as

X1 X2 X, X
(2.17) L( - [ @( : 2)6(’1 ’2)dudu.
tl 12 O<u<v<oo u v u v
Now, a direct computation shows that if 0 <u <v and if ¢, <t, (where
t; > - %), then
uh—V/2yn-172

14 ) _ h—h _ b
(2.18) G(J uz)"r(t1+1/2)r(t2+1/2)[” utm]>0.

We next show that

1 % !
(2.19) L b o)< 0 (0<x,<xy;-i<y<ty).
To establish (2.19), we see from (2.17) and (2.18) that it suffices to establish that
(2.20) @();‘ );2)<0 (0 <x, <x,;0 <u<v).

For any x,, x,, u,v satisfying 0 < x; < x, and 0 < u <, set
(221) a=x+u, b=x,+v, c=x,+u and d:==x; +v,

so that
a<c<b, a<d<b and c—a=b-d.

Since log K () is strictly concave on (0, + o0) from Proposition 2.1, we deduce from
Lemma 2.2 that (cf. (2.10))

log K(c) +log K(d) > log K(a) + log K(b), |
> K(c)K(d) > K(a)K(b).

Thus, with the definitions of (2.21), this becomes
(2.22) K(x,+u)K(x, +v)>K(x;+u)K(x,+ ).
On the other hand, from (2.12), (2.16) and (2.22), we have
®(x1 x2) — det 0,(u) 6,(v)
uow 0.(x) ©(0)
=K(x; +u)K(x, +v)— K(x; +v)K(x, +u) <0,

which establishes (2.20).

Next, using (2.13), set A(s,7):= A,,, (where s> - 3,#> - 3). Again from
Lemma 2.3, forany - 4 <1, <1, and } < s, < s,, the notation (2.12) permits us to
write (2.14) in the form

’ Sy 5 _ Sy Sz) (tl t2)
(223) A(tl IZ)—f£)<u<L:<w G(u v L u v dudv.

Now, from (2.18),

G(S1 32) >0,
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and from (2.19),

L([l ’2) < 0.
u v
Thus, it follows from (2.23) that
S1 5
A(ll tz)<0 (-3 <5y <53 <1< 1),
or equivalently, that
(2.24) A, L A = ANy <0,

Syt st
On setting s, = ¢; = u/2 and s, = t, = v/2 (where -1 < u < v), inequality (2.24)
becomes
(2.25) Nurorr > NAg,
which implies that log A, is strictly concave on (-1, + c0). O

This brings us to our main result:

THEOREM 2.5. The Turan inequalities (1.8), i.e.,

- 2m — 1\, A
(2.26) (5,) > (—z-m)bmﬁlbmﬂ (m=1,2,...),

are all valid (where i)m is defined in (1.5)).

ProOF. The strict concavity of logA  on (-1, + ), from Proposition 2.4, gives
that

(2.27) Nosi2> Mz, (m= 1,2,...).
Now, since an integration by parts and the change of variables u = t? in (2.13) yield
2 oo
2.28 A= ——r t2F30(1) dt,
(2:28) el (1)
(2.27) becomes, from the definition of b,, in (1.5), just
- 2 2m+ 1\, »
(229) (bm+1) = (2m+3) mbm+2 (m= 1’27--'),
or equivalently,
s 2m —1\;
(2.30) (b,)* > (m)bm~lbm+l (m=12,3,...).

Thus, (2.30) establishes the desired result of (2.26), except for the case m = 1. This
remaining case, m = 1, of the Turén inequalities (1.8) is then settled numerically, as
follows. The numbers {b,,}%_, were determined by Romberg integration to an
accuracy exceeding fifty decimal places, and the associated Turan difference, namely,

(2.31) (b,)* = thyb, = 3.5884 ---107* > 0,

was determined. (The details giving rigorous error bounds for these numerical
calculations appear in §4.) Thus, (2.30) and (2.31) give the desired result of (2.26).
O

We have in fact numerically determined the moments {b, }2°_,, each to an
accuracy of fifty decimal places, as well as the associated Turan differences, { D, L
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where

(2.32) D, = () —(

2m+1 bm—lbm+1‘

These numbers have been included in §4 for the benefit of the reader.

2m—1)A A

3. Background analysis. The purpose of this section is to obtain precise estimates
for the functions ®(z), ®'(¢), ®*(¢) and ®™(¢), where ®(¢) is defined in (1.13)
and (1.14). For convenience, we will adhere to the following notations. For ¢ > 0, set

(3.1)  a,(2):=an*(Qmne* — 3exp(5t — wn2e*) (n=1,2,...),

(32) ®(1)= ) a,(1)
n=1
and
(3'3) @1([):= Zan(t)‘
n=2
LemMMA 3.1. Setting
e e]
(3.4) I(t):=ft o(y)dy (1> 0),
then
(35) 1(1) = Texp(si — me*) = —— [7 yieray + [ 9,(3)d
- 7 s LY 00N,

Proor. From (3.2)-(3.4), I(t) = [F a,(y)dy + [ ®,(y)dy. From (3.1), the in-
tegral [ a,(y)dy consists of the difference of two terms. Integrating each of these
by parts and adding the results yields the desired result of (3.5). O

In the next result, upper and lower estimates for I(¢) of (3.4) are derived.

LEMMA 3.2. With the definition of (3.4),

™ Al — _1_ -ar _ _1 -8t
(3.6) I(t) > 2exp(Slr me*)|1 e L (r=0)
and
(3.7) I(t) < g—exp(St —ae*)  (t=0).

ProOF. From Theorem A(i), it follows that ®,(z) > 0 for all > 0. Thus,
[ ®,(s)ds > 0forall ¢ > 0. Thus, from (3.5) of Lemma 3.1,

1 *© 1/4,-y
8771/4/4’y e dy (z>0).
e i

Applying integration by parts to the last integral above yields

I(t) > %exp(St — me¥) —

1
(3.8) (1) > gexp(st — me*) — gexp(t — me*)
S SR R Y7
el AL
Next, for the complementary incomplete gamma function

P(rix)i= [y e™dy  (0<x<oo,v<l),
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it is known (cf. Luke [L, p. 201]) that
. __x_t_l_._ v—1,-x
I‘(V,x)<<x+2__v)x e (0<x<o0,v<1).
Choosing » = 1 and x = me*" and applying this inequality to the last integral of
(3.8) then directly gives the desired lower bound (3.6) of Lemma 3.2.
Next, Haviland [Hav, p. 415] proved that ®,(¢) of (3.3) satisfies

(3.9) ®,(s) < 64n2exp(9s — 4me®) (s> 0).
Inserting the above inequality into the last integral of (3.5) then yields
(3.10) 1(r) < Zexp(st — me*) = — [* yitera
) 2 P 8771/4 e Y 7
16 *© 5/4 -4y
+—~—1/4 eMy/e Y dy.

Next, since ye >’ is strictly decreasing for y > 3, one obtains the elementary
inequality
Y3 < e Ty (y > m).
Applying the above inequality to the integrand of the last integral in (3.10), (3.10)
then becomes
1 16734
_ -y
-y + o y /4e=7 dy.
But as 16734 /¢ < 1/87'/4, i.e., 128me~3"(= 0.032451 - )< 1, the last term in
(3.11) is negative, whence I(t) < (7/2)exp(5t — me*’) for all ¢ > 0, the desired
inequality of (3.7). O

LeMMA 3.3. With the definition of (3.3),
(3.12) |®;(2)| < 5657 exp(13t — 4me*) (1> 0).
ProoF. From (3.1) and (3.3),

(3.11) I(r) < %exp(St — me*') +

|@1(2)| = Z mn?(8m2ned — 30mnZe® + 15)exp(5t — mn’e*’) (r=>0),
n=2
or equivalently, with x := ¢’,
(3.13)
[e o]
|@1(1)] = 87°°| X n6(x8 B Sxt+ 15 )exp( —n’x*) (x=1).
aes 4mn 87 2n*

It is easily verified that ~15x*/47n* + 15/87°n* < 0 forall x > 1 and all n > 2,
so that, with y:= 7x*, (3.13) becomes
13 /4

(3.14) |@1(2)] < 1/4 Y nbe v (y=m).

n=2

As nS "% is a monotone decreasing function of n > 2 for each fixed value of
y = m, then by the 1ntegra1 test, we have that

T e < 6he* + f 6e=57 ds.
n=2
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On making the substitution u:= s2y in the above integral and on integrating by
g g
parts three times, we obtain
- 2 -4y 5 15
6, ,-n"y -4y € 5/2 = 3/2 kel 1/2
"};2;1 e < 6de ¥ + ———2y7/2{(4y) + 35 (4y)7" + ) (4y)

15e%> o e™¥ }
+ —du .
8 fzty Vu

Since 1/Vu < 1forall u > 4y > 4n, then e4yf,;f3e;“du/ Vu < 1, so that the above
inequality becomes

b 2
Y nle "V < 6de*

n=2

1+ — +

{ 1 5 15 15
4y 32y2  256y7  1024y7/?

I oem.

Now, the quantity in braces above is monotone decreasing for y > &, and the value

of this quantity when y = « is bounded above by 1 + (13 /407 ). Thus, we have
e 2 13

6,-n*y -4y .
Y. n’%e "V < 6de {1—!-407’} (y=m),

n=2

so that, from (3.14) and the fact that y = me®,

) 13
()] < 512(1 + 40—7)7r3exp(13t — 4me*)

< 5657%exp(13r — 4me*’) (¢ > 0),
the desired inequality of (3.12). O

LemMA 3.4. With the definition of (3.3),

0 0 1 0 0
(3.15) j; dsfs ®,(y)dy < 32771/4[ dsf . y=3/%evdy (1= 0).

met?

PrROOF. By Haviland’s upper estimate (3.9) for ®,(s) and the substitution v := me®’,

© © 16 0 0 _ap
(3.16) f, dsf ®,(y)dy < 711—/7[, dsf v dy (12 0).
Ky e

Next, since v%e~3’

inequalities

is strictly decreasing for v > «, one obtains the elementary

2-3/4p-0  y=3/4p-0
o 512

which, when applied to (3.16), directly gives the desired result of (3.15). O
LEMMA 3.5. With the definition of (3.2), set

_ x
p3 /et

(v>m),

(3.17) J(t):= ]°° s®(s)ds (1> 0).
Then, '
(3.18) (1) < {”7’ + %—’}exp(sz —net) (13 0).

PROOF. An integration by parts shows, with (3.4), that
(3.19) J(2) = t(e) + f"" I(s) ds.
t
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Now, with the expression (3.5) of Lemma 3.1, with one integration by parts, and
with some easy simplifications,

i _1 a1 > 34,y
/I I(s)ds—gexp(t me*!) 32771/4_[’ dsfwe%y e dy

+f[oodsfsw ®,(y)dy.

Thus, on applying inequality (3.15) of Lemma 3.4 to the above expression, we obtain

(3.20) ftw I(s)ds < %exp(z-—we“’) (r=0).

Then, applying (3.20) and the upper bound (3.7) of Lemma 3.2 to (3.19) directly
gives the desired inequality of (3.18). O

Our proof in Proposition 2.1 of the strict concavity of log K(#) on (0, + 00), where
(cf. (2.1)

K(1)= f°° O(u)du (12 0),
12
is based on the assertion that the function g(z), defined (cf. (3.26)) by

g(1)=J(0)@'(e) +e1[@(1)]” (12 0),
is positive for all ¢ > 0. The proof of this assertion will be divided into the two cases:

(3.21) g(t)>0 forse (0,0.01]
and
(3.22) g(t) >0 forz> 0.01.

The case of (3.22) will be a consequence of previously established estimates. For the
case of (3.21), we first note that since ®’(0) = 0 (cf. (iii) of Theorem A), g(0) = 0 by
(3.26). By Taylor’s formula, we can then write

(3.23) g(t)=t[g’(0)+ ﬁé—@i} (£€(0,7);0 <r<0.01).

Consequently, in order to establish (3.21), it suffices to show that

(3.24) g’(0) + gméé)’ >0  (£€(0,1);0 <1<001).

This last inequality requires that we estimate g’(0) and g@(¢) for 0 < < 0.01.
Since by (3.26),

(3.25) g () =30 (1)®(1) + t[@(1)]* + J(1) @D (1),

it is also necessary to examine the behavior of ®®(¢) on [0,0.01]. We remark that
the main reason for concentrating on this particular interval [0,0.01] is that it is
relatively easy to prove that ®®)(¢) > 0 on this interval.

Preliminaries aside, we proceed to establish some lemmas for establishing (3.21).
The reader may find it useful to have a hand calculator available while reading
portions of what follows.
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LEMMA 3.6. With the definitions of (3.2) and (3.17), set

(3.26) g(1):=J()®' (1) +1[®(1)]>  (r>0).
Then,

(3.27) ®(0) > 0.446 696899 - - - ,

(3.28) ®(0) > -33.461010 - - - ,

and

(3.29) g’(0) > 0.018790450 - - - .

PrOOF. From (3.2) and (i) of Theorem A, it follows that ©(0) > a,(0) + a,(0).
Simply evaluating a,(0) and a,(0) and adding, yields the result of (3.27). Next, from
(3.2), we have ®P(r) = ¥=_, a'?(¢), where from (3.1),

(3.30)  aP(0) = 7n?[327°n® — 224n?n* + 330mn? — T5]exp(-7n?).

With x:= #n?, the quantity in brackets above is a cubic polynomial in x, having
three distinct zeros 0.277455812 ---, 1.672823383 ---, and 5.049720804 - - - .
Since x = 7n? > 5.049720804 - -- for all n > 2, then a@(0)> 0 for all n > 2.
Thus, a lower estimate for ®®(0) is given by

®D(0) > aP(0) + a(0).

Evaluating a{®(0) and a$(0) from (3.30) and adding then yields the result of (3.28).
To derive (3.29), the definition of g(¢) in (3.26) provides us with

(3.31) g (1) =19 (1)@ (1) +J(1)2?(¢) +[®(1)]* (1> 0),
so that
(3.32) g’(0) = 7(0)@(0) + [®(0)]°.

Now, J(0) < e™7/8 = 0.0005401739 - - - from (3.18) of Lemma 3.5, and applying
this inequality (along with those established in (3.27)-(3.28)) in (3.32) yields the last
inequality, (3.29), of Lemma 3.6. O

LeMMA 3.7. With the definition of (3.2),
(3.33) ®3(1)>0 (0 <r<0.01).

PrOOF. Since ®®(0) =0 from (iii) of Theorem A, it suffices to show that
®@(7) > 0 on [0,0.01]. From (3.2), it follows that
[oe] o0
(334)  ©9(1)= Y a¥(t) = Y wnlexp(5t — mnle) ps(7nle?),

n=1 n=1

where
(3.35) ps(x):= 512x° — 8,448x* + 41,408x° — 68,096x> + 30,930x — 1,875.

The above polynomial has five distinct zeros, given by 0.071349 - - -, 0.604398 - - -,
1.996 885 - - -, 4617597 - - -, and 9.209769 - - - | so that ps(x)> 0 for x > 9.210.
As 7n? > 9.210 for all n > 2, it follows from (3.34) that

al(1)>0  (n>2,1>0),
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so that
(3.36) D (1) >a®(t) (1=0).

Thus, it suffices to show that a{¥(1) = mexp(5t — me*') - ps(me*') is positive on
[0,0.01].

The derivative of the polynomial ps(x) (cf. (3.35)) has four distinct zeros, given
by 0.30515 - -+, 1.3791 - - -, 3.6496 - - - , and 7.8660 - - - . In particular, p,(x) is thus
increasing on the interval (1.3791 - - -, 3.6496 - - - ). Since me* falls in this latter
interval for all 0 < 7 < 0.01, then ps(me*) > ps() for all 0 < ¢ < 0.01. Similarly,
since exp(5t — me*") is decreasing for all ¢ > 0, we then have
(3.37)  a®(1) > mexp(.05 — me ™) - ps(7) > 5,133 (0 <1<0.01).
Consequently (cf. (3.36)), @“@(¢) > 0 for all 0 < ¢ < 0.01, which gives the desired
inequality (3.33). O

Since our goal is to estimate g@(r) on the interval [0,0.01], and since the
expression for g®(¢) involves the term 3@’(z)®(¢) (cf. (3.25)), we next derive an
estimate for 3®'(¢)®(¢).

LEMMA 3.8. We have

(3.38) 130/(1)®(1)] <0506 (0 <7<0.01).
PrOOF. By definition (cf. (3.2) and (3.3)),
(3-39) o(t) = a(t) + @,(t) (¢20),
and we first show that
1
(3.40) ®,(1) < mal(t) (t>0).

Since ®,(1) < 64m2exp(9t — 4me*") for all £ > 0 from (3.9), to establish (3.40) it
suffices to show that

6mﬁumm—4mﬂ)<j%%u) (1> 0),

or equivalently (cf. (3.1)),
3
27e

As is easily seen, the above inequality is valid for all ¢ > 0 if it holds for 7 = 0:

6464 exp(-3me*) <1 — (t>0).

41
(521641681 --- =)6464e™3" <1 — %(: 522535170 - - - ).

As this is valid (3.40) then follows. Consequently, combining (3.39) and (3.40) gives
(with (i) of Theorem A),

203
(3.41) 0<®(1) < mal(t) (t=0).
Continuing, from (3.1), we see that

axg=zw{1—23

77,eéit

)exp(9t — me?) < 2772(1 -3 )exp(Qt ~ me*")
2me ™

for 0 < t < 0.01, so that
a,(t) < 1.082513 6697 exp(9t — we') (0<r< 0.01).
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Thus, from (3.41), there follows
(3.42) 0 < ®(t) < 1.08787264872exp(9t — me*') (0 <1<0.01).

We next estimate ®'(¢) = aj(¢) + ®{(¢). Recalling from (vii) of Theorem A that
aj(t) > 0 for 0 < t < ¢,, where ¢ is explicitly given in (1.15), then, as ®’(¢) < 0 for
all + > 0 (cf. (v) of Theorem A), we have '

0> @'(r) = aj(r) + @{(1) > ®{(1) = -[@{(1)| (0 < <),
so that
(3.43) |@°(¢)| <|®1(t)] (0<t<t,).
Hence, from (3.42), (3.43) and the upper bound (3.12) for |®1(?)|, we have
3|@7(¢)®@ ()] < 3(1.0878726487%exp(9t — me*'))565m3exp(13t — 4me®)
forO0 <r <ty ie,
3|0/(r)®(r)| < 1,843.9441387%exp(22¢ — Sme®’) (0 <1< 1y).
As exp(22t — 5me*") is strictly decreasing for all ¢ > 0, then
3|07(¢)®(1)] < 1,843.9441387% 5" < 0.085038454 (0 <t <1y),
so that certainly
(3.44) 3|@(r)@(1)| <0506 (0<t<t,).
On the other hand, if 7, < ¢ < 0.01, from (3.42), (3.2) and (3.3),
(3.45) 3|®(1)®(r)| < 3(1.087872 6487 exp(9¢ — me*))(|ai(2)| +|®i(2)|)-

At this point, we need an upper bound for |aj(¢)]. Clearly, from (3.1),

(3.46) laj(¢) | = 7|8m%* — 30me® + 15|exp(5t — me*')
15 15
— e 31 — A _
= 87 (1 e + 8erm)exp(ﬁt me?').
Next, if we set
15 15
O()=1~- + —,
(1) e 8mle®

it is easily seen that

max ©(r)=0(0.01) = 0.028513162 - - - .
0<1<0.01

Thus, combining the above with (3.46) yields
(3.47) laj(1)| < 87%0(0.01)exp(13t — me*’) (0 < < 0.01).

Now, using (3.47) and the upper bound for |®{(¢)| in (3.12) of Lemma 3.3, we have
from (3.45) that

(3.48) 3|@°(¢)®(t)] < 3(1.087872648) 7 exp(221 — 27e*’)
x [80(0.01) + 565 exp(-37e*')]
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for ¢, < ¢t € 0.01. Now, the quantity in brackets above is strictly decreasing for all
t > 0, the same being true for the factor exp(22¢t — 2me*'). Thus, the maximum of
the right side of (3.48), for 0 < 7 < 0.01, is taken on at ¢ = ¢, which gives

(3.49) 3[@’(1)@(1‘)] < 0.505076 975 < 0.506 (0 <r<0.01).
Combining the above with (3.44) gives the desired result of (3.38). O
LEMMA 3.9. With the definition of g(t) in (3.26),

(3.50) g(t)>0 (0 <¢<0.01).
ProoF. To establish (3.50), it suffices, from (3.23), to show that (cf. (3.24))

(2)
(3.51) g’(0) + —g—¥)—f >0  (£€(0,1);0<1<001).
Now, by (3.25), we have that

g@(t) =30/ (1)®(¢) + t[®(1)]” + ()@ (2).

Since J(r) > 0 for all ¢ > 0 from (3.17), and since ®®)(¢) > 0 for 0 < ¢ < 0.01 from
(3.33) of Lemma 3.7, it follows that, with (i) and (v) of Theorem A,

gP(1) =30/ (1)®(¢) = -3|@"(1)@(¢)] (0<t<0.01).
Hence, from (3.38) of Lemma 3.8,

(3.52) g?(t) > -0.506 (0 <1<0.01).

On the other hand, by (3.29) of Lemma 3.6, g’(0) > 0.018 790 453. Thus, with (3.52),
g’(0) + i)gé-)-{ > 0.018790453 + &;)—1(4).506),

or
g’(0) + &ég)-t— > 0.016 260453 (0 <1<0.01),

which establishes (3.51). O
It is still necessary to show that g(z), defined in (3.26), is positive for all 7 > 0.01.
To this end, we decompose g(¢) as

(3.53) g(t) = G,(1) + G,(1),

where

(3.54) G (t)=J(t)a(t) + ta?{1),

and where

(3.55) Gy(1):= J(1)®}(1) + 2ta,(1) @, (1) + [@,(1)]".

Our next immediate goal is to provide bounds for G,(¢) and G,(¢).
LemMa 3.10. Ser
(3.56) E,(t):= 7?exp(10t — 2me* ) ¥, (1),
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where
3¢ 15 15
. 4t . il Pnhui
(3.57) ()= (3= F -
Then (cf. (3.54)),
(3.58) G(t)= E/(t) (t=0.01).

PROOF. From (vii) of Theorem A, we have that a{(¢) < 0 for all ¢ > t,, where (cf.
(1.15)) 7, = 0.0001 1334 - - - . Thus, from the definition of G,(¢) in (3.54) and from
(3.18) of Lemma 3.5,

~4r
(3.59) G,(1)> (7—; + eT)exp(St —me*’) - aj(t) + ta?(t) (r>1,).

On substituting the definition of a,(¢) (cf. (3.1)) in the right side of (3.59) and
simplifying, the right side of (3.59) reduces exactly to E(z) of (3.56). As t, < 0.01,

(3.58) is then evidently satisfied. O
LeMMA 3.11. Set

(3.60) E,(t):= m?exp(10t — 2me*)W,(1),

where

(3.61) W,(1):= exp(8t — 3me*")| -223.67% — 5865‘:
e

Then (cf. (3.53)),
(3.62) G,(t)> E,(t)  (t=0).

PROOF. Since a,(t) > 0 for all 7 > 0 and for each n > 1 from (i) of Theorem A,
then @,(¢) > a,(t) for all > 0 from (3.3). Hence (cf. (3.55)),

(3.63) G,(1) > J(1)®((1) + 2ta,(t)a,(t) (2> 0).
Since J(z) > 0 from (3.17), for all 1 > 0, and since ®}(¢) < 0 from (3.3) and (vi) of
Theorem A, for all # > 0, then by (3.12) of Lemma 3.3 and (3.17) of Lemma 3.5, we

have

at e
=4

2 8

J(1)®;(2) = —565773( )exp(lSz — Sme*) (> 0).

Also, from (3.1), we have
2ta,(1)a,(t) = 167%t(2me* — 3)(8me* — 3)exp(10r — 5me™).
Substituting the above two expressions into (3.63) and simplifying then gives
G,(£) > mhexp(18t — 5we4’){—223.6t _ 98 }
8me !

which, from the definitions of (3.60) and (3.61), is the desired result of (3.62). O

This brings us to the final result of this section, namely

LEMMA 3.12. With the definition of g(t) in (3.26), then

(3.64) g(t)>0  (t>0).
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PROOF. If 0 < ¢ < 0.01, then g(z) > 0 by (3.50) of Lemma 3.9. Then, it suffices to
consider only ¢ > 0.01. Then, from (3.53) and Lemmas 3.10 and 3.11, we have

g(t) = E\(1) + Ey(r)  (1>0.01),
which, from (3.56) and (3.60), can be equivalently expressed as

(3.65) g(1) = m?exp(10t — 27e*)¥ () (> 0.01),
where
(3.66) V(t):= ¥, (1) + ¥,(1).
From (3.57) and (3.61), we verify that
3 15
’ — 4r — =
(3.67) V(1) = me* (12t = 1) + 5+ e
and that
(3.68)
(1) = 40)! 721(2683.2me*’ — 1788.8 623.97 ~ 365
V(1) = exp(8t — 3me* ){ wt( 2met — 8) +m ™=

It is clear from (3.68) that ¥;(¢) > O for all ¢ > 0. Similarly, we claim that ¥{(z) > 0
for all ¢ > 0. First, from (3.67), we see that ¥{(0) = 0.74573 - -+ > 0, and that
30

>
7734t

YO(1) = 48mte® + 8me®' —

so that ¥ () > 0 for all ¢ > 0. Hence, ¥{(¢) > 0 for all 7 > 0. Thus, from (3.66),
¥ (1) is strictly increasing for ¢ > 0, with

¥(1) > ¥(0.01) = ¥,(0.01) + ¥,(0.01) = 0.0058629--- >0 (> 0.01),

and we conclude from (3.65) that

(3.69) (1) > m2exp(10t — 2me*)¥ (1) >0 (1> 0.01),
which gives the desired inequality (3.64). O

We remark that the function ¥(z) of (3.66) is, in fact, negative for 0 < 0.005,
which supports the necessity of separately considering the two intervals 0 < 0.01

and ¢ > 0.01 in the proof of Lemma 3.12.

4. Numerical computation of moments and Turén differences. The accurate calcula-
tion of the moments b,, (m = 0,1,2,...) of (1.5) involves two separate numerical
problems. First, from (1.3), we can express ®(7) of (1.3) in the form

(4.1) o) = 3 a(n, 1),

n=1

where (cf. (1.14))

(4.2) a(x,1):= (2m2x%® — 3mx%e> )exp(-mx’e).
As in (i) of Theorem A, it is readily verified that

(4.3) a{x,t)>0 (x=>1,t>0),
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and that

da(x,t)

(4.4) =

<0 (x=1,t=0).

Because of (4.4), the integral test gives that

N

(4.5) 0<@()~ ¥ a(n0)< [ a(x,)dx.

n=1 N
Moreover, it can be verified (after an integration by parts) that

fw a(x,t)dx = nN3exp(5t — mN2%*),
N

so that (4.5) becomes
N
(4.6) 0<®(t)— Y a(n,t) <wN3exp(5t — nN%*).
n=1
The above upper bound for the error, in approximating ®(z) by its partial sum of N
terms, turns out to be quite accurate.
Next, for the moments Bm of (1.5), we write

~ 0 1 [e3]

b = t2®(t)dt = | t*"®(t)dt + 12" ®(t) dt,

ni= (t)di = [ rmo(e)ae+ [ (1)
or

7 = L oom 1 -2m+2) (J‘_) =
(47) b, foz d)(t)dt+f0 u O Jdu (m=01,..).

Because of the exponential decay to zero of ®(¢) as t — oo, the singularity at u = 0
in the last integral of (4.7) is removable for each m > 0.

The numerical procedure used for calculating the moments b, was the following.
The two integrals in (4.7) were each approximated numerically by Romberg integra-
tion (cf. Stoer and Bulirsch [SB, p. 132]), where ®(¢) was approximated by the finite
sum in (4.6). The iteration in Romberg integration was continued (for each integral
in (4.7)) until two entries in a single column agreed to sixty decimal digits. For the
values ®(7) of the integrands of the integrals in (4.7), the associated number N (of
the terms of the finite sum approximation to ®(z)) was selected so that the
approximation error in (4.6) was less than 10~%°. The computations were performed
in FORTRAN 77, using Richard Brent’s MP package (cf. Brent [Br]) for extended-
precision floating-point numbers and 110 digits of precision, on a VAX-11/780 in
the Department of Mathematical Sciences at Kent State University. The absolute
error in computing the moments {b,,}2%_, was less than 10~ in all cases. While it
appears from Table 4.1 that the moments b, are decreasing quite rapidly, we
mention the fact that they are eventually increasing. (The details of this will appear
elsewhere.) The relative error of these moments {b,,}2°_, was less than 10~ in all
cases.
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Though only the first three moments {?)m},zn=0 were specifically needed in §2 to
complete the proof of Theorem 2.5, it was thought that a lengthier tabulation of
these moments might be of interest to the reader, particularly since such a tabulation
of these moments does not exist in the literature. Although the moments {b,, }1%
were actually numerically determined, we have, for the sake of brevity, included in

Table 4.1 only the moments {b,,}2°_,, here rounded to sixteen significant digits.

Also included in this table are the associated Turan differences { D, },;_,, where
(4.8) D, = (z)m)z—(%)i)m_lzmﬂ (m=1,2,...).
TaBLE 4.1

m ?)m D,
0 6.214009 727353926 (-2) —_—
1 7.178 732 598 482 949 (-4) 3.588449148 619957 (-8)
2 2.314725338 818463 (-5) 3.163299 395 056 600 (-11)
3 1.170 499 895698 397 (—-6) 7.056 732 441 900 485 (-14)
4 7.859 696 022 958 770 (-8) 2.832220223070768 (-16)
5 6.474 442 660 924 152 (--9) 1.736 366 689 470 613 (-18)
6 6.248 509 280 628 118 (-10) 1.478 031720106 092 (-20)
7 6.857113566 031334 (-11) 1.641 533684 538 624 (-22)
8 8.379562 856 498 463 (-12) 2.277 443 847755 004 (-24)
9 1.122 895900 525 652 (-12) 3.822737726 048 953 (-26)
10 1.630766 572462173 (-13) 7.575377 587713 463 (-28)
11 2.543075058 368 090 (-14) 1.738 493 426 852 891 (-29)
12 4.226 693 865 498 318 (~15) 4.549 255 646 782 005 (-31)
13 7.441 357184 567 353 (-16) 1.340 195 434 809 036 (-32)
14 1.380 660423 385153 (-16) 4.397768 675764 370 (-34)
15 - 2687936596 475912 (-17) 1.593011 938279461 (-35) |
16 5.470 564 386 990 504 (-18) 6.320 855730991 445 (-37)
17 1.160 183185 841 992 (-18) 2.728 993 526 800 843 (-38)
18 2.556 698 594979 872 (-19) 1.274 579 325 080 585 (-39)
19 5.840019 662 344 811 (-20) 6.406 797 431 277 575 (-41)
20 1.379 672 872 080 269 (-20) —_—
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