

A Lower Bound for the de Bruijn-Newman Constant 1*

G. Csordas¹, T.S. Norfolk², and R.S. Varga³

¹ Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA

² Department of Mathematics, University of Akron, Akron, OH 44325, USA

³ Institute for Computational Mathematics, Kent State University, Kent, OH 44242, USA

Dedicated to the memory of our good friend Peter Henrici (Sept. 13, 1923–March 13, 1987)

Summary. A lower bound is constructively found for the de Bruijn-Newman constant Λ , which is related to the Riemann Hypothesis. This lower bound is determined by explicitly exhibiting an associated Jensen polynomial with nonreal zeros.

Subject Classifications: AMS(MOS); 30D10, 30D15. 65E05; CR: G1.m.

Introduction

The purpose of this paper is to obtain a constructive finite *lower bound* for the *de Bruijn-Newman constant* Λ , which is related to the Riemann Hypothesis. To our knowledge, no such lower bound for Λ appears in the literature.

For background, if $\zeta(z)$ denotes the Riemann zeta function, it is known that all zeros of $\zeta(z)$, except for simple zeros at -2, -4, -6, ..., lie in the "critical" strip defined by $0 \le \text{Re } z \le 1$ (cf. Titchmarsh [15, p. 30]), and the Riemann Hypothesis is the statement that all the zeros of $\zeta(z)$ in this critical strip lie precisely on the line Re z = 1/2. With Riemann's definition of his ξ -function, i.e.,

$$\xi(iz) := \frac{1}{2} \left(z^2 - \frac{1}{4} \right) \pi^{-\frac{z}{2} - \frac{1}{4}} \Gamma\left(\frac{z}{2} + \frac{1}{4} \right) \zeta\left(z + \frac{1}{2} \right), \tag{1}$$

it is known (cf. Henrici [5, p. 305]) that the Riemann Hypothesis is equivalent to the statement that all zeros of $\xi(z)$ are real. It is further known that ξ is an entire function of order one (cf. [15, p. 29]), and admits the integral representation (cf. Pólya [10, p. 11] or [15, p. 255])

$$\xi\left(\frac{x}{2}\right) = 8 \int_{0}^{\infty} \Phi(t) \cos(x t) dt, \qquad (2)$$

^{*} Research supported by the Airforce Office of Scientific Research and the National Science Foundation

where

$$\Phi(t) := \sum_{n=1}^{\infty} (2n^4 \pi^2 e^{9t} - 3n^2 \pi e^{5t}) \exp(-n^2 \pi e^{4t}) \quad (0 \le t < \infty).$$
 (3)

It is also known (cf. Pólya [10] or Csordas, Norfolk, and Varga [4, Theorem A]) that Φ satisfies the following properties:

i) $\Phi(z)$ is analytic in the strip $-\pi/8 < \text{Im } z < \pi/8$;

ii)
$$\Phi(t) = \Phi(-t)$$
, and $\Phi(t) > 0$ $(t \in \mathbb{R})$; (4)

iii) for any $\varepsilon > 0$, $\lim_{t \to \infty} \Phi^{(n)}(t) \exp[(\pi - \varepsilon) e^{4t}] = 0$, for each n = 0, 1, 2, ...

From (2), the Taylor series for ξ is given by

$$\frac{1}{8} \xi \left(\frac{x}{2} \right) = \sum_{m=0}^{\infty} \frac{(-1)^m \hat{b}_m x^{2m}}{(2m)!}, \tag{5}$$

where

$$\hat{b}_m := \int_0^\infty t^{2m} \, \Phi(t) \, dt \qquad (m = 0, 1, 2, \ldots). \tag{6}$$

(Note from (4ii) that $\hat{b}_0 > 0$, so that $\xi(0) \neq 0$.) On setting $z = -x^2$ in (5), the function $F_0(z)$, defined by

 $F_0(z) := \sum_{m=0}^{\infty} \frac{\hat{b}_m z^m}{(2m)!}, \tag{7}$

is then an entire function of order 1/2. Furthermore, from these definitions, x_0 is a real zero of $\xi\left(\frac{x}{2}\right)$ iff $z_0:=-x_0^2$ is a negative real zero of $F_0(z)$. From this, it follows that the Riemann Hypothesis is equivalent to the statement that all zeros of $F_0(z)$ are real and negative.

Continuing, let $H_0(x)$ be the Fourier transform of $\Phi(t)/2$, i.e., (cf. (4ii))

$$H_0(x) := \frac{1}{2} \int_{-\infty}^{\infty} \Phi(t) e^{ixt} dt = \int_{0}^{\infty} \Phi(t) \cos(xt) dt,$$
 (8)

so that $H_0(x) = \xi(x/2)/8$. Based on the properties of the function $\Phi(t)$ in (4), it can be shown, for any real λ , that the function $H_{\lambda}(x)$, defined by

$$H_{\lambda}(x) := \frac{1}{2} \int_{-\infty}^{+\infty} e^{\lambda t^2} \, \Phi(t) \, e^{ixt} \, dt = \int_{0}^{\infty} e^{\lambda t^2} \, \Phi(t) \cos(xt) \, dt \qquad (\lambda \in \mathbb{R}), \tag{9}$$

is an entire function of order one, with $H_{\lambda}(x)$ real for real x. More precisely, the sharper result is that $H_{\lambda}(x)$ is an entire function of order 1 and of type ∞ for any $\lambda \in \mathbb{R}$. Because this sharper result is not needed in what immediately follows, we have given the proof of this assertion in Appendix A.

Continuing, as a special case of a result of Pólya [11], if $H_0(x)$ has only real zeros, then the entire function $H_{\lambda}(x)$ also has only real zeros, provided

that $\lambda \ge 0$. Now, two results of de Bruijn [2] establish that

i) $H_{\lambda}(x)$ has only real zeros for any $\lambda \ge 1/2$;

ii) if
$$H_{\lambda}(x)$$
 has only real zeros for some real λ , then $H_{\lambda'}(x)$ (10) has only real zeros for any $\lambda' \ge \lambda$.

In particular, it follows from (10) that if the Riemann Hypothesis is true, then $H_{\lambda}(x)$ must possess only real zeros for any $\lambda \ge 0$.

It is interesting that Newman [7] has shown more recently that there exists a real number Λ , which in our notation satisfies $-\infty < \Lambda \le 1/2$, such that (cf. (9))

 $H_{\lambda}(x)$ has only real zeros when $\lambda \ge \Lambda$, and (11)

 $H_{\lambda}(x)$ has some nonreal zeros when $\lambda < \Lambda$.

Because of de Bruijn's earlier related work, it seems fitting to call the above constant Λ the de Bruijn-Newman constant.

We remark that Newman's method of proof for the existence of Λ in [7] is nonconstructive, and no finite lower bound for Λ appears in [7], or in any publications that we are aware of. Of course, from our discussion above, the truth of the Riemann Hypothesis would imply that $\Lambda \leq 0$, while Newman [7] offers the complementary conjecture that this de Bruijn-Newman constant Λ satisfies $\Lambda \geq 0$. Because of this connection of Λ to the Riemann Hypothesis, obtaining constructive lower bounds for Λ seems desirable.

Returning to $H_{\lambda}(x)$ of (9), it follows, in analogy with (5), that

$$H_{\lambda}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m \, \hat{b}_m(\lambda) \, x^{2m}}{(2m)!} \,, \tag{12}$$

where

$$\hat{b}_{m}(\lambda) := \int_{0}^{\infty} t^{2m} e^{\lambda t^{2}} \Phi(t) dt \qquad (m = 0, 1, 2, ...; \lambda \in \mathbb{R}).$$
 (13)

On setting $z = -x^2$ in (12), we obtain the entire function

$$F_{\lambda}(z) := \sum_{m=0}^{\infty} \frac{\hat{b}_m(\lambda) z^m}{(2m)!} \qquad (\lambda \in \mathbb{R}), \tag{14}$$

which is of order 1/2, and (14) extends the definition of (7) to all real values of λ . Noting that $\hat{b}_m(\lambda) > 0$ from (13) and (4ii) for all $m \ge 0$, then as before, $x_0(\lambda)$ is a real zero of $H_{\lambda}(z)$ iff $z_0(\lambda) = -x_0^2(\lambda)$ is a negative real zero of $F_{\lambda}(z)$. Thus, all the zeros of $H_{\lambda}(x)$ are real iff all the zeros of $F_{\lambda}(z)$ are real and negative, and from (11), the de Bruijn-Newman constant Λ can be equivalently determined by the conditions

$$F_{\lambda}(z)$$
 has only real negative zeros when $\lambda \ge \Lambda$, and $F_{\lambda}(z)$ has some nonreal zeros when $\lambda < \Lambda$. (15)

We next remark that since $F_{\lambda}(z)$ is a transcendental (i.e., nonpolynomial) entire function of order 1/2 for any real λ , it can be expressed (using the Hadamard factorization theorem) as

 $F_{\lambda}(z) = C(\lambda) \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n(\lambda)} \right), \tag{16}$

where from (14), $C(\lambda) := \hat{b}_0(\lambda) > 0$, and where $|z_n(\lambda)| > 0$ for all $n \ge 1$, with $\sum_{n=1}^{\infty} |z_n(\lambda)|^{-1} < \infty$. In particular, if the real number λ is such that $z_n(\lambda) < 0$ for all $n \ge 1$, then $F_{\lambda}(z)$ is seen to be an element of the Laguerre-Pólya class (written $F_{\lambda} \in \mathcal{L} - \mathcal{P}$), this class being defined as the collection of all entire functions f(x) of the form

$$f(x) = C e^{-\alpha x^2 + \beta x} x^n \prod_{j=1}^{\omega} \left(1 - \frac{x}{x_j} \right) e^{x/x_j} \quad (\omega \le \infty), \tag{17}$$

where $\alpha \ge 0$, β and C are real numbers, n is a nonnegative integer, and the x_j 's are real and nonzero with $\sum_{j=1}^{\infty} 1/x_j^2 < \infty$. Thus, we can express (15) alternately as

$$F_{\lambda} \in \mathcal{L} - \mathcal{P} \text{ when } \lambda \geq \Lambda, \text{ and}$$

$$F_{\lambda} \notin \mathcal{L} - \mathcal{P} \text{ when } \lambda < \Lambda.$$
(18)

Next, it is convenient to set

$$u_m(\lambda) := (m!) \hat{b}_m(\lambda)/(2m)! \quad (m = 0, 1, 2, ...; \lambda \in \mathbb{R}),$$
 (19)

so that, from (14), we can write

$$F_{\lambda}(z) = \sum_{j=0}^{\infty} \frac{u_m(\lambda) z^m}{m!} \qquad (\lambda \in \mathbb{R}).$$
 (20)

The n^{th} Jensen polynomial associated with $F_{\lambda}(z)$ is then defined as

$$G_n(t;\lambda) := \sum_{k=0}^n \binom{n}{k} u_k(\lambda) t^k \quad (n=0, 1, 2, ...; \lambda \in \mathbb{R}).$$
 (21)

Now, it is known (cf. Pólya-Schur [12]) that $F_{\lambda}(z) \in \mathcal{L} - \mathcal{P}$ iff $G_n(t; \lambda) \in \mathcal{L} - \mathcal{P}$ (n = 0, 1, 2, ...). As a consequence, if $F_{\lambda}(z) \in \mathcal{L} - \mathcal{P}$, then the zeros of each $G_n(t; \lambda)$ must be all real and negative for any $n \ge 1$. From this and (18), we immediately have

Proposition 1. Suppose that there is a positive integer m and a real number $\hat{\lambda}$ such that $G_m(t; \hat{\lambda})$ possesses a nonreal zero. Then,

$$\hat{\lambda} < \Lambda,$$
 (22)

where Λ is the de Bruijn-Newman constant.

This will be used in the next section.

2. Determination of a Lower Bound for A

We can use Proposition 1 in a numerically rigorous fashion to obtain a constructive finite lower bound for Λ . The idea is the following. For any real λ , the associated moments $\{\hat{b}_m(\lambda)\}_{m=0}^N$, from (13), can be computed with a known precision, as was similarly done in [4]. Calling the approximate moments $\{\hat{\beta}_m(\lambda)\}_{m=0}^N$, the Jensen polynomials associated with these approximate moments are then defined (cf. (19) and (21)) by

$$g_n(t;\lambda) := \sum_{k=0}^{n} \binom{n}{k} \frac{(k!) \, \hat{\beta}_k(\lambda)}{(2k)!} t^k \qquad (n=1, 2, ..., N), \tag{23}$$

which differ, because of errors in the $\widehat{\beta}_m(\lambda)$'s, from the exact Jensen polynomials $G_n(t;\lambda)$ of (21). One then finds the zeros of the $\{g_n(t;\lambda)\}_{n=1}^N$ with a good high-precision root finder, such as the Jenkins algorithm [6].

To estimate the discrepancies between the zeros of $g_n(t; \lambda)$ and $G_n(t; \lambda)$, we make use of the following well-known result of Ostrowski [8] and [9, Appendix B]:

Proposition 2. Let $f(z) = \sum_{j=0}^{n} a_j z^j$ and $h(z) = \sum_{j=0}^{n} b_j z^j$ be complex polynomials with

 $a_0 a_n \neq 0$, and let the zeros of f(z) be $\{z_j\}_{j=1}^n$ (which are all nonzero, but multiple zeros can occur). Assume that there is a real number τ with $4n\tau^{1/n} \leq 1$, such that

$$|b_j - a_j| \le \tau |a_j| \qquad (0 \le j \le n). \tag{24}$$

Then, the n zeros $\{w_j\}_{j=1}^n$ of h(z) can be ordered in such a way that

$$\left| \frac{w_j}{x_j} - 1 \right| < 8 \, n \, \tau^{1/n} \quad (1 \le j \le n).$$
 (25)

Our main result is the

Theorem. Let Λ be the de Bruijn-Newman constant of (11). Then,

$$-50 < \Lambda. \tag{26}$$

Remark. In our opinion, the importance of (26) is that a constructive method has been found to produce a finite lower bound for Λ , a bound which can be checked independently by others. No special significance is attached to the number -50. In fact, it can be expected that our lower bound can be substantially increased, at the expense of using even higher precision calculations of the moments $\{\hat{b}_m(\lambda)\}_{m=0}^N$, higher precision determination of zeros of higher-degree Jensen polynomials, and more computer time! In this vein, we mention that the recent impressive results of van de Lune, te Riele and Winter [16], show that the first 1,500,000,001 zeros of the Riemann zeta function in the critical

strip are simple and do indeed satisfy $\text{Re}\,z = 1/2$. These computations involved about 900 CPU hours on a CYBER 175/750 and about 1000 CPU hours on a CYBER 205.

Because of their use in establishing our main result of (26), we consider in detail the moments $\hat{b}_m(\lambda)$ of (13), and their numerical approximation. Since each moment $\hat{b}_m(\lambda)$ of (13) can be expressed as the sum

$$\hat{b}_{m}(\lambda) = \int_{0}^{1} t^{2m} e^{\lambda t^{2}} \Phi(t) dt + \int_{1}^{\infty} t^{2m} e^{\lambda t^{2}} \Phi(t) dt \qquad (m = 0, 1, 2, ...),$$
 (27)

we first give an upper bound for the last integral of (27). Assuming that λ is negative, it is elementary to show that $t^{2m}e^{\lambda t^2}$ is strictly decreasing for all t>1, provided that $0 \le m \le |\lambda|$. Thus,

$$\int_{1}^{\infty} t^{2m} e^{\lambda t^2} \Phi(t) dt < e^{\lambda} \int_{1}^{\infty} \Phi(t) dt < \frac{\pi}{2} \exp(\lambda + 5 - \pi e^4) \qquad (0 \le m \le |\lambda|), \tag{28}$$

the last inequality above being a consequence (cf. [4, Eq. (3.7)]) of the known inequality $\int_{1}^{\infty} \Phi(t) dt < \frac{\pi}{2} \exp(5 - \pi e^4)$. On setting

$$b_m^{(1)}(\lambda) := \int_0^1 t^{2m} e^{\lambda t^2} \Phi(t) dt \qquad (m = 0, 1, ...),$$
 (29)

it follows from (28) and the positivity of the integrands of (27) that when $\lambda = -50$,

$$b_m^{(1)}(-50) < \hat{b}_m(-50) < b_m^{(1)}(-50) + 1.45 \cdot 10^{-94} \quad (0 \le m \le 50).$$
 (30)

Thus, the absolute error obtained by replacing $\hat{b}_m(-50)$ by $b_m^{(1)}(-50)$ is at most $1.45 \cdot 10^{-94}$ for all $0 \le m \le 50$.

Next, if $\Phi_N(t)$ denotes the sum of the first N terms of (3), then it is known (cf. [4, Eq. (4.6)]) that

$$0 < \Phi(t) - \Phi_N(t) < \pi N^3 \exp(5t - \pi N^2 e^{4t}) \quad (0 \le t < \infty).$$
 (31)

But for fixed $N \ge 1$, $\exp(5t - \pi N^2 e^{4t})$ is strictly decreasing for $t \ge 0$, so that

$$0 < \Phi(t) - \Phi_N(t) < \pi N^3 e^{-\pi N^2}$$
 $(0 \le t < \infty)$

and on evaluating the above when N=9, we have, in particular, that

$$0 < \Phi(t) - \Phi_0(t) < 7.1 \cdot 10^{-108} \quad (0 \le t \le 1). \tag{32}$$

On defining

$$b_m^{(2)}(\lambda) := \int_0^1 t^{2m} e^{\lambda t^2} \Phi_9(t) dt \qquad (0 \le m \le |\lambda|), \tag{33}$$

we then have, in analogy with (30), that

$$0 < b_m^{(2)}(-50) < \hat{b}_m(-50) < b_m^{(2)}(-50) + 1.46 \cdot 10^{-94} \qquad (0 \le m \le 50). \tag{34}$$

For our problem at hand, the specific moments $\{b_m^{(2)}(-50)\}_{m=0}^{16}$ of (33) were numerically approximated, using the Romberg integration method.

Now, for each real λ and for each nonnegative integer m, we note that the integrand of the integral of (33) is, from (3), in $C^{2k+2}[0, 1]$ for any positive integer k. This smoothness of this integrand implies that the (k+1)-st column $T_{i,k}^{(m)}$ of the Romberg integration table, associated with the integral of (33), is convergent to the exact value of that integral when step lengths $h_i = 2^{-i}$ (i=0,1,...) are used (cf. Stoer and Bulirsch [14, Eq. (3.4.7), p. 136]). As this is true for each positive integer k, then the extrapolation method of Romberg integration applied to the integral of (33), can produce arbitrarily accurate values of $b_{i}^{(2)}(\lambda)$.

For the Romberg method of integration applied to each of the moments $\{b_m^{(2)}(-50)\}_{m=0}^{16}$, all computations were performed in FORTRAN 77, using Brent's MP package [1] for extended-precision floating-point numbers and 110 digits of precision on a VAX-11/780 in the Institute for Computational Mathematics at Kent State University. On denoting the entries of the Romberg table, associated with the integral $b_m^{(2)}(-50)$, by $T_{i,k}^{(m)}(0 \le m \le 16)$, the actual iterations of the Romberg method (with step lengths $h_i = 2^{-i}$) were terminated in all cases when three successive entries, in a single column of $T_{i,k}^{(m)}$, agreed to 65 significant digits in normalized floating-point representation. The final approximation to $b_m^{(2)}(-50)$, denoted by $\hat{\beta}_m(-50)$, was then defined to be the largest values of k and i in the Romberg table such that $T_{i-1,k}^{(m)}$ and $T_{i,k}^{(m)}$ agreed to 65 significant digits in normalized floating-point representation. These computed moments $\{\hat{\beta}_m(-50)\}_{m=0}^{16}$, truncated to 60 significant digits, are given in Table 1. In particular, this accuracy implies that

$$\left| \frac{\widehat{\beta}_m(-50)}{b^{(2)}_m(-50)} - 1 \right| \le 10^{-64} \quad (m = 0, 1, ..., 16),$$

and thus, with (34) and the magnitude of the numbers $\hat{\beta}_m(-50)$ from Table 1, we have the conservative bounds

$$\left| \frac{\hat{\beta}_m(-50)}{\hat{b}_m(-50)} - 1 \right| \le 10^{-60} \quad (m = 0, 1, ..., 16).$$
 (35)

As an added precaution in estimating the moments $\{b_m^{(2)}(-50)\}_{m=0}^{16}$, we used a technique, described in Bulirsch and Stoer [3] and in [14, p. 141], for determining asymptotic upper and lower bounds for the numbers $b_m^{(2)}(-50)$. Specifically, from the entries $T_{i,k}^{(m)}$ of the Romberg table associated with $b_m^{(2)}(-50)$, one can easily compute the numbers $U_{i,k}^{(m)}$, defined by

$$U_{i,k}^{(m)} = 2T_{i+1,k}^{(m)} - T_{i,k}^{(m)},$$

and these numbers $U_{i,k}^{(m)}$ build a *new* associated Romberg-type table for the sought mement $b_m^{(2)}(-50)$. Because of the smoothness of the integrand of (33),

Table 1. The computed moments

m	$\beta_m(-50)$
0	4.19656 13339 29181 93310 73686 70252 18989 08075 14869 18579 39818 0690 (-2)
1	2.32011 71418 85536 82157 44972 44537 77375 47795 47788 78966 01105 0975 (-4)
2	$3.77089\ 97677\ 30881\ 23738\ 16195\ 78125\ 66204\ 22778\ 11075\ 77741\ 16472\ 9297\ \ (-6)$
3	$1.00227\ 69596\ 72457\ 01475\ 32275\ 01674\ 91380\ 18026\ 69849\ 21468\ 18990\ 4564 (-7)$
4	3.66337 61735 70406 23425 94004 30741 73648 26291 73317 49864 18599 5080 (-9)
5	$1.69252\ 58688\ 59480\ 57551\ 74685\ 29708\ 06315\ 55393\ 12181\ 30248\ 37182\ 8204\ (-10)$
6	$9.40358\ 19102\ 26836\ 44833\ 49098\ 87957\ 05821\ 36909\ 15984\ 87893\ 65573\ 6861\ (-12)$
7	$6.07928\ 26738\ 29840\ 63138\ 68635\ 44716\ 86713\ 97453\ 67318\ 45834\ 48369\ 0895\ (-13)$
8	$4.46758\ 07993\ 72611\ 29511\ 35750\ 68116\ 37426\ 68930\ 24699\ 78052\ 39388\ 9235\ (-14)$
9	$3.66774\ 22933\ 21191\ 60815\ 42487\ 62105\ 96955\ 97101\ 68171\ 08309\ 51339\ 1938\ (-15)$
10	3.31887 96848 26088 11013 54576 58364 37597 62937 04392 36885 19692 7259 (-16)
11	$3.27495\ 66308\ 18925\ 42519\ 54660\ 46267\ 96438\ 12270\ 41617\ 07059\ 97861\ 9700\ (-17)$
12	3.49350798890349282136667271409812286231840970238293939521310(-18)
13	3.99970 36556 45639 31360 95058 35153 19042 31348 37182 39401 70449 4114 (-19)
14	$4.88503\ 24854\ 26203\ 87448\ 03575\ 24970\ 26569\ 88256\ 82483\ 91503\ 16030\ 0221\ (-20)$
15	$6.33188\ 05610\ 98341\ 63013\ 78223\ 19621\ 78670\ 63968\ 85444\ 40652\ 31370\ 0822\ (-21)$
16	8.67132 23144 43954 11051 39659 30824 92230 12635 52164 34153 16708 6153 (-22)

then for each nonnegative integer k, the first column (corresponding to the trapezoidal rule) of the Romberg table for $b_m^{(2)}(-50)$, can be written symbolically as

$$T(h) = b_m^{(2)}(-50) + \tau_1 h^2 + \tau_2 h^4 + \dots + \tau_k h^{2k} + (\tau_{k+1} + o(1)) h^{2k+2},$$

where the τ_k are independent of h. If $\tau_{k+1} \neq 0$, it is shown in [3] that the (k+1)-st columns $T_{i,k}^{(m)}$ and $U_{i,k}^{(m)}$ of these tables eventually converge monotonically to $b_m^{(2)}$ (-50), as $i \to \infty$, at asymptotically the same rate, but from opposite directions. Hence, these numbers thus provide asymptotically upper and lower bounds for $b_m^{(2)}(-50)$. Indeed, in all cases of our computations, the final elements of the first columns of $T_{i,0}^{(m)}$ and $U_{i,0}^{(m)}$ were respectively monotone increasing, and monotone decreasing, i.e.,

$$T_{7.0}^{(m)} < T_{8.0}^{(m)} < T_{9.0}^{(m)}$$
 and $U_{7.0}^{(m)} > U_{8.0}^{(m)}$ $(m = 0, 1, ..., 16)$.

This monotonicity suggests that each interval $[T_{9,0}^{(m)}, U_{8,0}^{(m)}]$ contains $b_m^{(2)}(-50)$, for all m=0, 1, ..., 16.

While it might be interesting for the reader to peruse the bulk of digits of the tables $T_{i,k}^{(m)}$ and $U_{i,k}^{(m)}(m=0,1,...,16)$, we have opted instead to give in Table 2 the much briefer listing of the *number* of significant digits to which $T_{9,0}^{(m)}$ and $U_{8,0}^{(m)}$ actually agree. From Table 2, we note two interesting items. First, we note that the agreement between $T_{9,0}^{(m)}$ and $U_{8,0}^{(m)}$ in Table 2 start in the case m=0 with the surprisingly high number 93, and second, that this agreement decays to 73 digits when m=16. But, this 73 digits of agreement is still very conservative for what is claimed in (35).

m	Significant digits of agreement	m	Significant digits of agreement
0	93	9	79
1	91	10	79
2	89	11	78
3	88	12	76
4	85	13	75
5	85	14	74
6	82	15	74
7	82	16	73
8	81	_	_

Table 2. Significant digits of agreement between $T_{9,0}^{(m)}$ and $U_{8,0}^{(m)}$

Proof of the Theorem. From (21), set $G_{16}(t; -50) := \sum_{j=0}^{16} b_j t^j$, and from (23), set $g_{16}(t; -50) := \sum_{j=0}^{16} a_j t^j$. From (35), it follows that (24) is satisfied with $\hat{\tau} := 10^{-60}$, i.e.,

$$|b_j - a_j| \le 10^{-60} |a_j| \quad (0 \le j \le 16).$$
 (36)

Thus, from (25) of Proposition 2, the zeros $\{w_j\}_{j=1}^{16}$ of $G_{16}(t; -50)$ and the zeros $\{z_j\}_{j=1}^{16}$ of $g_{16}(t; -50)$ are coupled through

$$\left| \frac{w_j}{z_i} - 1 \right| < 8 \, n \, \hat{\tau}^{1/n} = 8 \cdot 16 (10^{-60})^{1/16} < 0.022762. \tag{37}$$

We remark that the Jenkins algorithm [4], implemented in MP with 110 digits of precision, was used to determine all zeros of the polynomial $g_{16}(t; -50)$. (The zeros of $g_{16}(t; -50)$, truncated to twenty decimal digits, all given in Table 3.) From Table 3, we see that $g_{16}(t; -50)$ has a complex zero

$$z_2 := -220.91911\ 17368\ 44952... + i7.09256\ 52553\ 63889\ 67...$$
 (38)

whose modulus is

$$|z_2| = 221.03293 51307 13450...$$

On multiplying by $|z_2|$ in (37) for the case j=2, we obtain

$$|w_2 - z_2| < 0.022762 \cdot |z_2| < 5.03116.$$
 (39)

It is evident from (38) and (39) that

$$\text{Im } w_2 > 2.0614,$$
 (40)

whence $G_{16}(t; -50)$ has a nonreal zero. Applying Proposition 1 then gives the desired result of (26). \square

As a final remark, the specific numbers -50 (as a lower bound for Λ) and 16 (as the degree of the associated Jensen polynomial $G_{16}(t; -50)$ having some

Table 3. The computed zeros of $g_{16}(t; -50)$

Real part	Imaginary part	
-138.94239 25728 27322 76	-	
-220.91911 17368 44952 75	7.09256 52553 63889 6761	
-220.91911 17368 44952 75	-7.09256 52553 63889 6761	
-286.00232 55522 12961 55	_	
-310.79782 67793 62579 98		
-350.18851 27945 36537 80	_	
-386.00014 13750 66719 39	_	
-422.33256 42144 23880 51	_	
-459.76615 10040 07194 18	Malana	
-498.36874 57252 58991 53	_	
-538.57501 58487 17219 65		
-580.89029 00913 24826 13	_	
-626.04149 21507 01991 05	_	
-675.20466 35826 12683 01		
-730.62228 63983 20152 69		
-798.10604 06173 97392 18	_	

nonreal zeros) appear somewhat magically in this section. To explain this further, our first high-precision attempt to constructively determine a lower bound for Λ began with $\lambda = -100$, and the associated approximate Jensen polynomials of (23), i.e., $\{g_n(t; -100)\}_{n=1}^9$, all had only real negative zeros, while $g_{10}(t; -100)$ possessed a nonreal zero. Now, the precision of these calculations were much more than adequate, in applying Proposition 2, to deduce the lower bound

$$-100 < 1$$
.

As this was almost too easy, the process was repeated with $\lambda = -50$. The associated approximate Jensen polynomials $\{g_n(t; -50)\}_{n=1}^{15}$ had only real negative zeros, while $g_{16}(t; -50)$ possessed a nonreal zero. This time, however, the precision of these calculations were just within the applicability of Proposition 2 to deduce that $G_{16}(t; -50)$ has a nonreal zero, whence

$$-50 < 1.$$

These calculations support our optimism that further improved lower bounds for Λ are possible!

Appendix A

Our object here is to show that the entire function (cf. (9)) $H_{\lambda}(x)$, defined by

$$H_{\lambda}(x) := \frac{1}{2} \int_{-\infty}^{+\infty} e^{\lambda t^2} \, \Phi(t) \, e^{ixt} \, dt = \int_{0}^{\infty} e^{\lambda t^2} \, \Phi(t) \cos(xt) \, dt, \tag{A1}$$

is of order 1, and of maximal type, (i.e., its type, σ_{λ} , satisfies $\sigma_{\lambda} = \infty$), for all $\lambda \in \mathbb{R}$. We remark that this is known to be true for the special case $\lambda = 0$, since the Riemann ξ -function is of order one and of maximal type (cf. Titchmarsh [15, p. 29]) and since $H_0(x) = \xi(x/2)/8$. For other values of real λ , this may be a known result, but we are unaware of any references for this. We do know that related results can be derived from the fact that the following differential identity holds, namely

$$H_{\lambda}(x) = F_{\lambda}(D) H_{0}(x), \quad \left(D := \frac{d}{dx}\right)$$

where

$$F_{\lambda}(z) := \sum_{m=0}^{\infty} \frac{(-1)^m \, \lambda^m \, z^{2m}}{m!}.$$

Such results (cf. Sikkema [13, p. 100] and van der Steen [17, p. 62]) give the weaker results that $H_{\lambda}(x)$ is either of order 1 and type at most ∞ , or of order less than 1, for any $\lambda \in \mathbb{R}$. In contrast with the above references, our technique of proof uses asymptotic series which may have independent interest.

To begin, for any $\lambda \in \mathbb{R}$, set $M_{\lambda}(r) := \max_{|z|=r} |H_{\lambda}(z)|$, so that $M_{\lambda}(r)$ is the maximum

modulus function for $H_{\lambda}(z)$. It an be verified from (A1) that

$$M_{\lambda}(r) := \int_{0}^{\infty} e^{\lambda t^2} \Phi(t) \cosh(rt) dt,$$

so that

$$\frac{1}{2} \int_{0}^{\infty} e^{\lambda t^2} \Phi(t) e^{rt} dt \leq M_{\lambda}(r) \leq \int_{0}^{\infty} e^{\lambda t^2} \Phi(t) e^{rt} dt, \tag{A2}$$

for all $r \ge 0$ and any $\lambda \in \mathbb{R}$. Next, from [4, eq. 3.41 and Thm. A(i)], we have

$$\pi(2\pi e^{4t}-3)\exp(5t-\pi e^{4t})<\Phi(t)<\frac{203}{202}\pi(2\pi e^{4t}-3)\exp(5t-\pi e^{4t}),$$

for all $t \ge 0$, and as $(2\pi - 3) e^{4t} < 2\pi e^{4t} - 3 < 2\pi e^{4t}$ for all t > 0, then

$$\frac{\pi}{2}(2\pi - 3) \int_{0}^{\infty} \exp\left[(9 + r)t + \lambda t^{2} - \pi e^{4t}\right] dt < M_{\lambda}(r) < \left(\frac{203}{202}\right) 2\pi^{2} \int_{0}^{\infty} \exp\left[(9 + r)t + \lambda t^{2} - \pi e^{4t}\right] dt$$
(A 3)

for all $r \ge 0$. Thus, we set

$$I(r,\lambda) := \int_{0}^{\infty} \exp\left[(9+r)t + \lambda t^{2} - \pi e^{4t}\right] dt = \int_{0}^{\infty} e^{h(t)} dt, \tag{A4}$$

where

$$h(t) := h(t; r, \lambda) := (9+r) t + \lambda t^2 - \pi e^{4t} (t \ge 0).$$
 (A 5)

We have

$$h'(t) = 9 + r + 2\lambda t - 4\pi e^{4t},$$

$$h''(t) = 2\lambda - 16\pi e^{4t},$$

$$h^{(m)}(t) = -4^m \pi e^{4t} (m \ge 3).$$
 (A 6)

In what follows, λ is a fixed real number, and $r(\geq 0)$ is a large parameter, tending to $+\infty$. Since our assertion that $H_{\lambda}(x)$ is of order 1 and maximal type is known to be true for $\lambda = 0$, we may assume $\lambda \neq 0$.

Lemma 1. Given any $\lambda \in \mathbb{R}$, then for each r > 0 sufficiently large, there is a unique $\hat{t} = \hat{t}(r, \lambda)$ for which $h'(\hat{t}) = 0$.

Proof. Since $h^{(3)}(t) = -64\pi e^{4t} < 0$ all $t \ge 0$, then h''(t) is strictly decreasing for $t \ge 0$, with $h''(t) \to -\infty$ as $t \to +\infty$. Next, $h''(0) = 2\lambda - 16\pi$. If $\lambda \le 8\pi$, set $\tilde{t} := 0$. If $\lambda > 8\pi$, let $\tilde{t} > 0$ be the unique value of t > 0 such that $h''(\tilde{t}) = 0$. Thus, in all cases, h''(t) < 0 for all $t > \tilde{t}$. Then, choose t > 0 sufficiently large so that $h'(\tilde{t}) > 0$. Because h'(t) is strictly decreasing (for $t > \tilde{t}$), with $h'(\tilde{t}) > 0$ and with $h'(t) \to -\infty$ as $t \to \infty$, there is evidently a unique $\tilde{t} > \tilde{t}$ for which $h'(\tilde{t}) = 0$. \square

By construction, we note that $h''(\hat{t}) < 0$ for all r sufficiently large, so that the Taylor expansion of h(t), about \tilde{t} , can be written as

$$h(t) = h(\hat{t}) - \frac{|h''(\hat{t})|}{2} (t - \hat{t})^2 + \sum_{m=3}^{\infty} \frac{h^{(m)}(\hat{t})}{m!} (t - \hat{t})^m.$$
 (A7)

We now estimate $\hat{t} = \hat{t}(r, \lambda)$. By definition, $h'(\hat{t}) = 0$ implies from (A 6) that

$$4\pi e^{4\hat{t}} = 9 + r + 2\lambda \hat{t}$$

Calling $4\hat{t} := \hat{u}$, $(9+r)/4\pi =: \beta$, and $\lambda/8\pi =: \alpha$, the above equation becomes

$$e^{\hat{u}} = \beta + \alpha \,\hat{u}. \tag{A8}$$

Lemma 2. For $\beta > 0$ sufficiently large, the unique solution \hat{u} of (A8) satisfies

$$\log[\beta + \alpha \log \beta] < \hat{u} < \log \beta + \frac{\alpha \log \beta}{\beta}.$$
 (A9)

Thus

$$\hat{t} = \frac{1}{4} \left\{ \log \beta + \frac{\alpha \log \beta}{\beta} + O\left(\left(\frac{\log \beta}{\beta}\right)^2\right) \right\}, \quad as \beta \to \infty.$$
 (A 10)

Proof. From (A 6) and (A 8), we have that $h'(t)/4\pi = \{-e^u + \beta + \alpha u\} =: g(u)$. If we set $\bar{u} := \log \beta + \alpha \log \beta/\beta$, then a calculation shows that

$$g(\bar{u}) = -\frac{\alpha^2 \log^2 \beta}{2\beta} \left\{ 1 - \frac{2}{\log \beta} \right\} + O\left(\frac{\alpha^3 \log^3 \beta}{\beta^2}\right), \quad \beta \to +\infty.$$

Thus, since $\lambda \neq 0$ implies $\alpha \neq 0$, then for $\beta > 0$ sufficiently large, we have $g(\bar{u}) < 0$, whence (from the monotonicity of Lemma 1) $\hat{u} < \bar{u}$. Similarly, with $\underline{u} :=$

 $\log(\beta + \alpha \log \beta)$, a calculation shows that

$$\begin{split} g(\underline{u}) &= \alpha \log \left\{ 1 + \frac{\alpha \log \beta}{\beta} \right\} = \alpha \left\{ \frac{\alpha \log \beta}{\beta} - \frac{1}{2} \left(\frac{\alpha \log \beta}{\beta} \right)^2 + O\left(\left(\frac{\alpha \log \beta}{\beta} \right)^3 \right) \right\} \\ &= \frac{\alpha^2 \log \beta}{\beta} \left\{ 1 - \frac{1}{2} \left(\frac{\alpha \log \beta}{\beta} \right) + O\left(\left(\frac{\alpha \log \beta}{\beta} \right)^2 \right) \right\} > 0, \end{split}$$

for all β sufficiently large, whence $g(\underline{u}) > 0$. But as $g(\hat{u}) = 0$, the monotonicity of Lemma 1 gives that $\underline{u} < \hat{u} < \overline{u}$ for all β sufficiently large, which is (A9). Finally, $\underline{u} := \log(\beta + \alpha \log \beta) = \log \beta + \log\left[1 + \frac{\alpha \log \beta}{\beta}\right] = \log \beta + \frac{\alpha \log \beta}{\beta} + O\left(\left(\frac{\alpha \log \beta}{\beta}\right)^2\right)$, $\beta \to \infty$. This means that $\overline{u} - \underline{u} = O\left(\left(\frac{\alpha \log \beta}{\beta}\right)^2\right)$, and as $\alpha = \lambda/8\pi$ is a fixed nonzero constant, then $\hat{u} = 4\hat{t}$ evidently satisfies (A10). \square

We now estimate the terms $\{h^{(m)}(\hat{t})\}_{m=0}^{\infty}$ of (A7). A short calculation shows that

$$h(\hat{t}) = \pi \beta \log \beta \left\{ 1 - \frac{1}{\log \beta} + O\left(\frac{\log \beta}{\beta}\right) \right\},$$

$$h''(\hat{t}) = -16\pi \beta \left\{ 1 + O\left(\frac{\log \beta}{\beta}\right) \right\},$$

$$h^{(m)}(\hat{t}) = -4^m \pi \beta \left\{ 1 + O\left(\frac{\log \beta}{\beta}\right) \right\}, (m \ge 3), \quad \beta \to +\infty.$$
(A 11)

Next, from (A7) and (A4), we have that

$$I(r,\lambda) = e^{h(\hat{t})} \int_{0}^{\infty} \exp\left\{-\frac{|h''(\hat{t})|}{2} (t-\hat{t})^{2} + \sum_{m=3}^{\infty} \frac{h^{(m)}(\hat{t})}{m!} (t-\hat{t})^{m}\right\} dt.$$

Setting $t - \hat{t} = v$, then

$$I(r,\lambda) = e^{h(\hat{t})} \int_{-\hat{t}}^{\infty} e^{-\frac{|h''(\hat{t})|}{2}v^2} e^{Q(v)} dv,$$

where $Q(v) := \sum_{m=3}^{\infty} h^{(m)}(\hat{t}) v^m/m!$. Setting

$$e^{Q(v)} := 1 + \sum_{j=3}^{\infty} \mu_j v^j$$
, where $\mu_j = \frac{h^{(m)}(\hat{t})}{m!}$ for $j = 3, 4$, and 5,

then we have, since $\hat{t} \to +\infty$ as $r \to \infty$, that (in the sense of asymptotic series, cf. Henrici [5, Ch. 11])

$$I(r,\lambda) = e^{h(\hat{t})} \int_{-\hat{t}}^{\infty} e^{-\frac{|h''(\hat{t})|}{2}v^2} \left\{ 1 + \mu_3 v^3 + \mu_4 v^4 \dots \right\} dv$$

$$\begin{split} & \cong e^{h(\hat{t})} \left\{ \int\limits_{-\infty}^{+\infty} e^{-\frac{|h''(\hat{t})|}{2}v^2} dv + \mu_4 \int\limits_{-\infty}^{+\infty} e^{-\frac{|h''(\hat{t})|}{2}v^2} v^4 dv + \ldots \right\}, \\ & = e^{h(\hat{t})} \left\{ \sqrt{\frac{2\pi}{|h''(\hat{t})|}} + \frac{h^{(4)}(\hat{t})}{8(h''(\hat{t}))^2} \sqrt{\frac{2\pi}{|h''(t)}} + \ldots \right\} \\ & = e^{h(\hat{t})} \sqrt{\frac{2\pi}{|h''(\hat{t})|}} \left\{ 1 + \frac{h^{(4)}(\hat{t})}{8(h''(\hat{t}))^2} + \ldots \right\} = e^{h(\hat{t})} \sqrt{\frac{2\pi}{|h''(\hat{t})|}} \left\{ 1 + O\left(\frac{1}{\beta}\right) \right\}. \end{split}$$

Using the results of (A11) in the above, we deduce, after some calculations, that

$$I(r,\lambda) = e^{\pi\beta\log\beta - \pi\beta + O(\log^2\beta)}, r \to \infty.$$
 (A12)

Thus, upon recalling that $\beta := (9+r)/4\pi$), this gives that

$$\log I(r,\lambda) = \frac{r \log r}{4} + O(r), \tag{A13}$$

as $r \to \infty$. From this, there follows

$$\log \log I(r,\lambda) = \log r + \log \log r + O(1), \quad r \to \infty, \tag{A 14}$$

so that

$$\lim_{r \to \infty} \frac{\log \log I(r, \lambda)}{\log r} = 1. \tag{A15}$$

But since we have from (A3) that

$$\frac{\pi}{2}(2\pi - 3) I(r, \lambda) < M_{\lambda}(r) < \left(\frac{203}{202}\right) 2\pi^{2} I(r, \lambda) \quad \text{(all } r \ge 0),$$

then on taking logarithms and using (A13), we have

$$\lim_{r \to \infty} \frac{\log M_{\lambda}(r)}{r \log r} = 4. \tag{A16}$$

Hence, from (A16), we then have that

$$\lim_{r \to \infty} \frac{\log \log M_{\lambda}(r)}{\log r} = 1 \quad \text{(all } \lambda \in \mathbb{R}). \tag{A 17}$$

This proves that $H_{\lambda}(x)$ is an entire function of order 1 for any $\lambda \in \mathbb{R}$. Next, as $H_{\lambda}(x)$ is of order 1, its type, σ_{λ} , is defined as usual by

$$\overline{\lim_{r\to\infty}} \frac{\log M_{\lambda}(r)}{r} =: \sigma_{\lambda}.$$

But from (A 16), it is evident that $\sigma_{\lambda} = +\infty$ for all $\lambda \in \mathbb{R}$. \square

Acknowledgement. The research of the authors was supported by the Airforce Office of Scientific Research

References

- Brent, R.P.: A FORTRAN multiple-precision arithmetic package. Assoc. Comput. Mach. Trans. Math. Software 4, 57–70 (1978)
- 2. de Bruijn, N.G.: The roots of trigonometric integrals. Duke Math. J. 17, 197-226 (1950)
- 3. Bulirsch, R., Stoer, J.: Asymptotic upper and lower bounds for results of extrapolation methods. Numer. Math. 8, 93–104 (1966)
- Csordas, G., Norfolk, T.S., Varga, R.S.: The Riemann Hypothesis and the Turán inequalities. Trans. Amer. Math. Soc. 296, 521–541 (1986)
- 5. Henrici, P.: Applied and Computational Complex Analysis, vol. 2. New York: Wiley 1977
- 6. Jenkins, M.A.: Zeros of a real polynomial. Collected Algorithms from CACM, No. 493 (1974)
- 7. Newman, C.M.: Fourier transforms with only real zeros. Proc. Amer. Math. Soc. 61, 245-251 (1976)
- 8. Ostrowski, A.M.: Recherches sur la méthode de Gräffe et les zéros des polynômes et des séries de Laurant. Acta. Math. 72, 99-257 (1940)
- Ostrowski, A.M.: Solution of Equations and Systems of Equations. New York: Academic Press 1960
- Pólya, G.: Über die algebraisch-funktionentheoretischen Untersuchungen von J.L.W.V. Jensen. Kgl. Danske Vid Sel. Math.-Fys. Medd. 7, 3-33 (1927)
- Pólya, G.: Über trigonometrische Integrale mit nur reellen Nullstellen. J. Reine Angew. Math. 158, 6-18 (1927)
- Pólya, G., Schur, J.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)
- Sikkema, P.C.: Differential Operators and Differential Equations of Infinite Order with Constant Coefficients. Groningen: Noorhoff 1953
- 14. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Berlin, Heidelberg, New York: Springer 1980
- 15. Titchmarsh, E.C.: The Theory of the Riemann Zeta-function, 2nd Edition (revised by D.R. Heath-Brown). Oxford: Oxford University Press 1986
- van de Lune, J., te Riele, H.J.J., Winter, D.T.: On the zeros of the Riemann zeta function in the critical strip IV. Math. Comput. 46, 667–681 (1986)
- 17. van der Steen, P.: On Differential Operators of Infinite Order. Delft: Uitgeverij Waltman 1968

Received June 24, 1987 / June 30, 1987

Errata for "A Lower Bound for the de Bruijn-Newman Constant Λ ", by G. Csordas, T.S. Norfolk, and R.S. Varga

The following corrections should be made:

• p. 486, eq. 20. Read "
$$\sum_{m=0}^{\infty}$$
" for " $\sum_{j=0}^{\infty}$ ".

- p. 493, line +16. Read "It can be..." for "It an be...".
- p. 494, line +15. Read "a unique $\hat{t} > \tilde{t}$ " for "a unique $\tilde{t} > \tilde{t}$...".
- p. 494, line +17. Read "about \hat{t} " for "about \tilde{t} ".
- p. 496, line +2. At the end of this display, read " $\sqrt{\frac{2\pi}{|h''(\hat{t})|}}$ " for " $\sqrt{\frac{2\pi}{|h''(t)}}$ ".