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Abstract: A technique is developed whereby one can obtain asymptotic estimates of eigenvalues of first-order iteration
matrices. The technique is applied to iteration matrices arising from the numerical solution of the 1- and 2-dimen-
sional biharmonic equation. The eigenvalue estimates are computationally verified.
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1. Introduction

Given a symmetric positive-definite matrix equation Ax = b, first order iterative methods for
the computing the solution are defined by

Mx**'=Nx*+b (1.1)
where
A=M-N, x? =“arbitrary” initial vector. (1.2)

A necessary and sufficient condition for convergence of first order schemes is that the spectral
radius of the matrix M~ 'N, p(M~'N), satisfies

p(M7IN)<1. (1.3)

General conditions on the matrices M and N to assure (1.3) can be found in [1], [2], and [4] and
although these conditions cover a wide number of situations, little is known of the actual rate of
convergence of the iteration (1.1). This is disconcerting for it has been observed many times over
that slight changes in the splitting (1.2) can decrease the number of iterations by several orders of
magnitude and it would be useful to know ahead of time the number of iterations needed to
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reduce the norm of the error || x* — x ||, by a factor of, say, 10. A rough approximation to such a
number is given by the quantity

~1/log,e[p(M'N)] (1.4)

and although this estimate can often be low, it nevertheless represents computational reality in
many cases.

The disadvantage of formula in (1.4) is that it requires p(M 'N) which is, in general,
unavailable. However, in the case where the matrix A4 originates from certain elliptic partial
differential equations, approximations to the spectral radius are known. As an example, consider
the numerical solution of the two-dimensional Laplace equation, Au = f, on the unit square with
zero-Dirichlet boundary conditions. Central difference approximations on a grid with uniform
mesh space £ yields the symmetric positive-definite matrix A given by

C B
B C B

The following is known, cf. [4]:
(i) Point Jacobi Method:

M = diagonal(4),  p(M7'N)=1- in?hr*
(i) Point Gauss—areedel Method:
D = diagonal(A4), A=D—-L-L', M=D-1L;
p(M7'N)=1—ah?.
(ii1) Point SOR:
D = diagonal(4), A=D—-L-L',
M=D-—-wL, 0<w<2,
F,=M'N, B=DYL+L",
2
1=1=p(8)°
Consequently, if 7 =10"2, then (1.4) asserts that the number of iterations required by the point

Jacobi method to decrease the error by a factor of 10 is 4664 whereas the number of iterations
required by the point Gauss—Siedel method is approximately one-half the number of point

p(Z,,)=1-2ah, w,=




G. Rodrigue, R. Varga / Iterative solutions of the biharmonic equation 131

Jacobi iterations. Moreover, relaxing the Gauss—Siedel method to the optimal parameter of w,
achieves an SOR iterative method that requires 35 iterations to decrease the error by a factor of
10. Hence, one can see that eigenvalue estimates of the form are extremely important in
determining the possible speed-up one might obtain by using a parameter w > 1.

Unfortunately, eigenvalue estimates such as those given in are difficult to obtain as they
typically require knowledge of the eigenvectors of the matrix .%,. However, for the purpose of
iteration speed-up it is not important to have precise estimates of the eigenvalues of %, but to
have knowledge of how the eigenvalues behave with respect to the mesh size 4. Using the
“order” notation, (i1) and (iii) can be expressed as

(i) p(&) =1 - 0(h?),

(i) p(Z,,) =1 O(h),
and it is the decrease from 2 to 1 in the power of 4 that leads one to draw the conclusion that a
considerable decrease in iteration count can be obtained by using w, instead of w = 1.

In this paper, we develop a technique for obtaining O(4*) eigenvalue estimates of M~ 'N such
as those given in (ii)" and (iii)” based upon an idea that was originally developed by Garabedian,
[1]. We will demonstrate how this technique generates some of the classical O(A%) eigenvalue
estimates for matrix splittings of the one-dimensional Laplace matrix and then apply the
technique to obtain O(/4“) eigenvalue estimates for matrix splittings arising from the numerical
solution of the 1- and 2-dimensional biharmonic equation.

2. Basic approach

In [1], Garabedian observed that the optimum relaxation parameter w, of the point relaxation
method for solving the system of finite difference equations for the Laplacian can be derived by
viewing the relaxation method as a time-differencing scheme. Specifically, for the Laplacian
A¢p = 0, the general relaxation method over a grid with mesh size Ax = Ay = A is given by

qb?,j] = (1 + W)¢:'1,j + %W[q)?:ll,j + ¢?711 + P7+1,j + ‘f)?,jﬂ] - (2-1)
If we express w in the form
2
L g7 (2:2)

for any positive value of the constant ¢, then we can rearrange (2.1) to obtain
¢7~1,j + ‘157,1‘—1 + ¢7+1,/‘ + ¢?,j+1 - 4‘157,]

h2
n+1 n n+1 n n+1 n n+1 n n+1 n
_ ¢i,j ““1’;‘,“‘?1’—1,]"‘(151'—1,./ n ¢i,j _(f)i,j_ff’i,jﬂ'*‘(ﬁi,jﬂ +2C¢i,j “¢i,j
h? h? h '

(2.3)

Using the familiar idea that the index n refers to a new time variable, ¢, and that (2.2) indicates
the location of new net points spaced at time intervals equal to the original mesh size h, we
recognize that (2.3) is the difference analogue of the hyperbolic partial differential equation

(;bxt + (I)yt + 2C¢t = ¢xx + (i)yy' (24)
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Thus for small values of & Garabedian observed that convergence of the iterative method (1.2)
can be investigated by a Fourier analysis of the decay of time dependent terms in the solution of
(2.4).

In this paper we approach the analysis of iterative methods much in the same way as
Garabedian did except that a differential eigenvalue problem is obtained rather than a time
dependent partial differential equation. Specifically, the iterative method for solving the matrix
equation Ax = b is expressed as a first order matrix iteration

Mx**'=Nx*+b (2.5)
and then using variations of the ideas set forth in Garabedian we will show that the convergence
of (2.5) can be analyzed through a differential eigenvalue problem

Ru = AQu
(here R and Q are differential operators).

To illustrate the idea, let us consider the numerical solution of the 1-dimensional Laplace
equation

uxxzf(x)v O<X<19 (2.6)

with prescribed boundary conditions. Using central differences, (2.6) is approximated by the
matrix equation Au = b where

- .

A=— -1 2 -1 . (2.7)

Let A=D—L— L' where D is a symmetric and positive definite matrix and consider the
iteration

(D—L)a""'=L'%" +b. (2.8)

It is well known that the convergence behavior of (2.8) is controlled by the magnitude of the
eigenvalues of the generalized eigenvalue problem

(D—L)o=AL'"D. (2.9)
In this paper we will always use a rearrangement of (2.9) and study the eigenvalue problem
Av=y(D—-L)b, y=(1-X). (2.10)

Letting D =2h"?I, (that is, (2.8) is the point-Gauss-Siedel method), then, away from the
boundaries, (2.10) becomes

20, = (0,1 +0141) -1 *}\){zvi—vi~l}

h? h?

U; U;— U;_ 5
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If we assume that the vector v is a discrete approximation to a smooth function v, then Taylor
expansions yield

20, — (Ui*l + Ui+1)
h’ -

—(v.), +0(n?)

and
U; (Ul_‘vifl) U; (Ux)i
— et = = 22 4 O(1).
h? h* h? h M)
Consequently, if we ignore boundary conditions, (2.10) becomes

—vxx+0(h2)=Ll——;;\l{u+vxh+0(hz)}. (2.12)

Now, for small %4, v .h can be neglected as a lower order term, so that (2.12) is further
approximated by the differential eigenvalue problem
~v=v, y=(1-\)/K. (2.13)
That is, A =1— O(h*). If (2.6) is augmented with zero Dirichlet boundary conditions, it is
known, see [2], that for w = 1, the largest eigenvalue of (2.9) is precisely
(cos mh)’ =1 —a’h*+ O(h*) (2.14)
so that the above technique does, in fact, yield the correct O(/4%) eigenvalues estimates of (2.9).
Other well known eigenvalue and convergence rate estimates can be obtained for various
block- and point-Jacobi and Gauss-Siedel methods when applied to the Laplacian Au = /. In the

following sections, we apply this technique to the biharmonic equation A%u = 0 and obtain O(#%)
eigenvalue estimates to a variety of classical splittings.

3. One-dimensional biharmonic equation

Consider the numerical solution of the one-dimensional biharmonic equation

Nu=u__  =g(x), 0<x<l. (3.1)
Using a standard central difference formula on a uniform mesh with mesh length 4 yields
h4A2“i =6u;— My tu ) (o tu )+ O(hz) (3.2)

(here, the notation u, = u(ah) is used). If (3.1) is augmented by appropriate boundary condi-
tions then a symmetric, positive-definite matrix equation

Au=g (3.3)
arises where
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For different splittings 4 = M — N, we will be obtaining eigenvalue estimates for the matrix
eigenvalue problem

Nvo=AMv. (3.5)
For analysis purposes, we will use the more convenient equivalent form of (3.5) given by

Av=yMo, y=1-A\. (3.6)

3.1. Point—Jacobi method

We first consider the point Jacobi method where

1 T
M=Z; 6 . (3.7)

Then, ignoring boundary conditions, (3.6) can be considered a consistent difference approxima-
tion to the differential eigenproblem

Ao+ O(h?) = a ;4}\>v. (3.8)
Consequently, for small A, we obtain the approximate differential eigenproblem

Av=1yv ‘ (3.9)
where

y=6(1—\)/h* (3.10)
If we assume the boundary conditions

v(0) =0(1) =0, (0) =0, (1) =0, (3.11)
then the eigenvalues of (3.9) are

y=(in)", i=1,2,..., (3.12)
so that

A=1-L0mh)', i=1,2,.... (3.13)
Table 1
n X max A=1-4(wh)* Rel. error
10 0.998900836 0.998891138 9.7x107¢
20 0.999916774 0.999916522 55%x1077
30 0.999982446 0.999982421 26x107°8

40 0.999994259 0.999994254 5.0x107°
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We now test the validity of the estimate (3.13). To do so, we assume the boundary conditions
(3.11) on equation (3.1) so that the matrix A in (3.3) takes the form

5 -4 1
—4 6
1
A=—| 1 1 (3.14)
h4
6 -4
1 -4 5

Letting h = 1/n + 1, the eigenvalues of (3.5) are computed via EISPAC for different values of n.
Table 1 records the results where A, = max{eigenvalue(M 'N)} and the relative error is given
by | A — Al /A nax- We see that, for small £, the estimate (3.13) does, in fact, hold true.

3.2. Point-Gauss—Siedel method

We now consider the point Gauss—Siedel method and let

1|

b=

Then,

so that, for sufficiently smooth v,

(3.15)

(3.16)

[Mv];=[(D—L)v],
3v;, 3v,—4v,_,+tuv,_, v, 2 _,
—F_'_ T ~,=-};—Z+;§(UX)i+O(h )
Ignoring boundary conditions, (3.6) is a consistent difference approximation to the differential
eigenvalue problem

A+ O(h?) = Q—h}ﬁ [30 + 2ho, + O(h?)].

Table 2

n o(M7'N) A=1—3(mh)* Rel. error
10 0.99779900 0.99778227 1.7x107°
20 0.99983350 0.99983304 46x1077
30 0.99996488 0.99996484 40x1078
40 0.99998851 0.99998851 0
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Consequently, for small 4, we obtain the approximate differential eigenvalue problem to obtain

Av=yv (3.17)
where v = (1 — A) /h*. The eigenvalues of (3.17) are given by (3.12) so that

A=1-1(iwh)", i=1,2,..., (3.18)
Le.,

p(M 'N)=1-0(h"). (3.19)

To test the validity of the eigenvalue estimate given by (3.18) we compute the spectral radius
of (3.5) via EISPAC for different values of h=1/n+1 using (3.15) and the relative error is
given by |p(M 'N)—X|/p(M 'N). Table 2 lists the results where we see, that for small 4, the
estimate (3.18) does, in fact, hold true.

3.3. SOR-improvement

We now attempt to determine how much improvement in the convergence rate of the previous
Gauss—Siedel method can be obtained by SOR. In this case,

M=(1/w)D—L (3.20)

where D and L are as in (3.15) and (3.16). We now follow the idea put forth in Garabedian, [1],
and set

w=2/(1+ch), O0<c<h ' (3.21)
Then (3.6) becomes
Av=(1-M{(3D—L)+ chD}0. (3.22)
Now,
ID-L-— ,
1 -4 3

so that for sufficiently smooth v,
[(%D - L)U]iz (20,),/h* + O(h™?).

Consequently, we have that (3.6) is a discrete approximation to the differential eigenvalue
problem

A+ O(h?) = 1*3A[2ux+3cu+o(h)]. (3.23)

Hence, for small values of 4 and for ¢ << h~! (3.23) is approximated by the differential
eigenvalue problem

A% =y |20, + 3cv],

y=(1-N\) /K. (3.24)
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Table 3

¢ (L)

10 0.9999528
2 0.9999676
0.92 0.9990460

That is,

A=1-0(h%). (3.25)
hence, if w, is such that

p(Lwy)<p(Z,), 1<w<2,
then (3.25) implies that

p(Fw,)<1—0(n).

To verify this, we let A=1/41 and vary the constant ¢ until w,=2/(1 + ¢,h) is achieved.
Table 3 lists the computational results when (3.14) is used. Hence, we see that as in the case for
Laplace’s equation, overrelaxation of the Gauss-Siedel method reduces the power of 4 in the
eigenvalue estimates by 1.

3.4. O(h?)-estimates

We now ask the question as to whether it is possible to define a symmetric positive definite
matrix D so that the eigenvalue estimates of (M~ 'N) where
A=D—-L-1L' M=D-1L, N=L',
are of the form 1 — O(%?).
To do so, we begin by letting

Then,

1 —@+B) M6-a)
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Hence, for a sufficiently smooth function v,

R(AD = L)v], =30+ 3B, + (=4 =3B ) v, + 0,y (3.26)
Using the Taylor expansions

Dy =0+ (0) 8+ 3(0) B+ £ (0 ) ° + O(R%),

vy =0~ (0) A+ H(o) h* = §(0) h* + O(RT),

0o =0, 2(0,) A+ 2(ve) 8% = 3 (v ) 17+ O(RY),
we get from (3. 26) that

h[(D L)]:% =B v+ 3(Bi+ By +4)(v,) A

Z(Bi - Bi—l)(uxx)ihz 11 (Bi+ Bizt = 8)(0enx) e+ O(hA)-
(3.27)

Consequently, if we assume that

B;=-2 alli,
then (3.27) simplifies to

R(D = L)v]i= = (0e0)h* + O(h*). (3.28)

In order that D be positive-definite, we assume

a; >4, alli.
Then

h*[Dv]; = e, — 2(v;; + V1)

= (&; = 4)v; = 2(v,,);h* + O(h*)

and,

[(D-L)o],=[(3D—L)v+31Dv],
) AT+ e, — ) uh = (v,), A7+ O(1).

Ignoring boundary conditions and assuming «; = « = constant, (3.6) is a consistent difference
approximation to the eigenvalue problem

Ao+ O(h*) = (1 =N =vh 1+ 2(a— 4ok — v, A7+ O(1)]. (3.29)
Thus for small 4 and « > 4, (3.29) is approximated by the differential eigenproblem
A=y, v, =3(a—4)(1—-A,)/h*.

o

( .X)CX

That 1s,

2 NG
)\awl_(m)(l’nh), 1—1,2,..‘. (330)

However, for a = 4, we have for small 4, the eigenproblem

A Y4 XX Ya = _(1-—>\4)/h2
That is,

A, =1-(imh)’, i=1,2,.... (3.31)
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Table 4

n p(M7IN) A=1-(7wh)* rel. error
10 0.99386454 0.99334682 5.2x107%
20 0.99961107 0.99949913 12x107°
30 0.99989571 0.99989452 12x107°
40 0.99996575 0.99996552 2.3x1077

To corroborate the estimate (3.30), we take

5 =2
-2 6 -2
D=—1— (3.32)

h4
L 6 =2

L -2 5
and calculate the spectral radius of M~ !N where M=D—L, A=D—L— L' and 4 is given
by (3.14). Table 4 records the results for various values of A7=1/n+ 1.

A similar calculation is done to corroborate the estimate (3.31) where in this case
4 =2

1|72 . -
D=— . 5 |- (3.33)

-2 4
Table 5 records the results.

3.5. SOR-improvement

We now show that SOR of the previous iteration achieves a reduction in the powers of % in
the eigenvalue estimates. As before, let

and

A=D,—L,—L.

1

Ma=;D‘,—La, 1<w<2.
Table 5
n p(M™IN) A=1—(wh)? Rel. error
10 0.(1956846 0.91843303 1.2x107°?
20 0.97769651 0.97761994 7.8%107°
30 0.98974526 0.98977298 1.7x107°

40 0.99413364 0.99412870 49x107°
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Table 6
c n=10 30 50 70
100 0.9197 0.9683 0.9804 0.9876

We now deviate somewhat from the idea of Garabedian by letting

w=2/(1+ch") (3.34)
where p> 1 and 0 < c <h " In this case,
1

~D, = L,= (3D~ L,) + 3ch"D,.
From (3.27) and (3.28), we have
(1D, = Ly)o], = = (5,) 7+ Ha— &) e k= = e(u,) 1~ + O(1),
so that (3.6) is a consistent difference approximation to
A+ O(h*) = (1 = A)[ = veh '+ Sa—d)evoh™* — cv, k"7 + O(1)]. (3.35)
We first consider the case a > 4. Since we are trying to determine the existence of an w given

by (3.34) that will minimize the power of /4 in the eigenvalue estimates, we see that a value of
=3 1in (3.34) will achieve this. Then for small /, (3.35) is approximated by the eigenproblem

A=y, —v+3(a—dew],  yo=(1-A,)/h (3.36)
Consequently, for « >4 and ¢ < h ™3,
A,=1—-0(h). (3.37)

Hence, for a > 4, SOR reduces the power of & from 4 to 1. In order to verify this, we take D
as in (3.32), ¢ = 100, and determine w,. Table 6 records the results where we see that (3.37) is, in
fact, achieved.

In order to obtain a similar result for a = 4, we let p =1 in (3.35). Then, for small 4, (3.35) is
approximated by

AzU=Y4[——Uxxx_CUxx]? Y4:(1M>\4)/h

That is,
A,=1-=0(h).
Taking & =1/21 we determine the w,(a) for several values of a > 4. In this situation
« -2
1 . .
b= . =2

-2 «
Table 7 records the results where we see that a = 4 is, in a sense, optimal.

Table 7

a=10 6 4.5 42 4 3.99

wy (@) 1.996 1.989 1.963 1.724 1.657 1.584
pl%, (a)] 0.903% 0.9007 0.8899 0.8756 0.8234 0.8779
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4. Two-dimensional biharmonic equation

We now consider the numerical solution of the two-dimensional biharmonic equation
2
A u:uxxxx_i—zuxxyy‘*_uyyyyzf(x7 )’)7 nga y<l- (4.1)

Using a standard central difference formula on a uniform mesh with mesh length 7=1/n+1
yields

(Azu)i~jh4 =20u, ;— 8(”1-1,j Fupn Ut U ji1)

+2(ui~1,j tu g et U ui+l,j+1)
+(ui—»2,j+ui+2,j+ui,j—2+ui,j+2)+O(h2)‘ (4-2)

If (4.2) is augmented by appropriate boundary conditions, then a symmetric, positive-definite
matrix equation

Au=g
where
1 K
A =— D C B C D
h .

arises where
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We consider the splitting 4 =D — L — L™' where D is a symmetric positive-definite block
tridiagonal matrix and analyze the matrix eigenvalue problem

Ao=(1-2){D-L)b. (4.3)
Let D be defined as
[Du] =0+ B,_l’jvi_l,j + ,8i+1’jvi+1,j
FYi Vi o1t Y1l e (4.4)
Then
[(3D—L)v];; =100, + (%BHLJ)UHLJ + (=8 =3Bi1,)vin,
+(%7i,j+1)vi,j+1 + ("8 - %Yi,ﬁl)ui,j—l
+2(0i 91 F 01 1) F (0 T ).
Taylor expansions yield
[(%D—L)u]ij=a[jvij+bij(vx),-jh+cij(vy)ijh
+d,(u,) ik + e (v,), 2+ f(0,), 0
+8,(0ee) i + 01 (00y) B+ 415 (0,,0) B+ 7350, ) P+ O(R*)
where
a;;= 3(Biry = Biciy) + 31 = i)
bij = %(Bi+1,j+ IBi—-l,j) +6, Cij = %(‘Yi,j+1 + Yi,j—l) +2,
dj=3(Ber;—Biiy)s e =0, fi=3(¥ije1 = Vi)

We now construct the coefficients of the matrix D so that a;,;=b;;=c,;=d,;=e;;=f;;=0. This
will happen when

Bis1,;=Bi-1,;=—6 and v, ;,1=% ;1= -9
It then follows that
&=L py==2% ;=0 n=-1,

so that
h4[(%D - L)U]ij= “‘hB[(Uxxx)ij+ Z(Uxxy)ij + (Uyyy)ij] + %h4(vxxxx)ij+ O(h4)
(4.5)
and
h*[Dv]i;= (a;;— 16) v, — [6(vec) +2(v,, )], A% + O(h*). (4.6)

Combining (4.4) and (4.5), we see that (4.3) becomes (ignoring boundary conditions and
assuming «,; > « = constant)

A+ O(h?) = (1 = N {[veer + 2000, + 0y, | A7

xxy yyy

+3(a—16)vh™* = }[60,, + 20, | A > + O(1) }. (4.7)
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For a > 16, we have for small 4 that (4.7) is approximated by the eigenproblem

ANv=vy,,

v, =(a—16)(1=A,)/h*. (4.8)
If the boundary conditions

v(x, y)=Aav(x, y)=0, (x, y) € Boundary([0, 1] x [0, 1]) (4.9)
are used on (4.1) then

A, =1—(8/(a—16))(imh)*, i=1,2,.... (4.10)

In the case a = 16, (4.7) becomes for small A
AZU:'Y16(“6UXX_2U)W)’ 716=(l —>\16)/2h2‘
That is,
Ne=1—(imh)’, i=1,2,... (4.11)

To corrobarate (4.10) and (4.11), we impose the boundary conditions (4.9) on (4.1). In this
case, the matrix A takes the form

(B, o D ]
Cl B2 C'2
A=L|p - D, ,
h
Bn—l Cn—l
B Dn-2 Cn—l Z}n_
18 -8 1 ]
-8 19 -8 1
. . T -
B, =B =
1 n 1
19 -8
L 1 -8 18 |
19 -8 1 i
-8 20 -8 1
1 - ) )
B, = 11 2<igsn—1,
20 -8
L 1 -8 19 |
-8 2
2
C = 5 | 1<igsn—1,
L 2 -
D=1, 1<i<n—2
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To verify (4.10) we define

11 -2 D,
D= .
WA . —-21
-21 D,
[ 18 6 i
-6 19
D,=D, =
19 —6
L -6 18
[ 19 -6 i
-6 20
D,= . , 2<i<n—1
20 —6
A -6 19

Again the spectral radii of M~ 'N=(D— L) 'L"' for different values of h=1/n+1 are
computed with EISPAC and compared with (4.10). As before the relative errors are also
computed. Table 8 records the results.

To verify (4.11), we define the off-diagonals of D as above and take the main diagonal of D to
be the constant value 16. The spectral radii of M 'N=(D — L) L' for different values of
h=1/n+1 are computed via EISPAC and compared with (4.10). The relative errors are also
computed. Table 9 records the results.

We now analyze the effect of SOR acceleration on (4.3). That is, we consider the matrix
eigenvalue problem

Av=(1-M)[(1/w)D - L]v

Table 8

n o(M™IN) A=1-2(wh)* Rel. error
10 0.988623 0.986693 1.9%1073
20 0.999043 0.998998 45%x107°
Table 9

n p(M™'N) A=1—(wh)? Rel. error
10 0.920182 0.918433 1.9%1073

20 0.977748 0.977619 1.3x1074
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and, as before, we assume
w=2/(1+ch")

where p> 1 and 0 <c¢ <A™ Then
[(1/w)D—L]=[(3D— L)+ tch"D].

Using (4.4) and (4.5) we get the differential problem
Ao+ O(h*)=(1- }\){[UMX + 20, +v ]hfl

yyy

+ (e —16)coh * — c(6v,, + 2v,, ) h* > + O(h*)} (4.12)

For a > 16, we set p = 3 so that for small %, (4.11) is approximated by

N0 =y, { Vo + 20,0, 0, + (e — 16)60},
Ya= (1 =A)/h.

That is,
A,=1-0(h).

For a =16, we take p =1 so that for small /%, (4.12) is approximated by
Av = vy { Vexx T 20, +0,,, — C(6UXX + ZUW)},
Y16 = (1 = Ay6) /B,

so that
Ag=1—-0(h).

That is, as in the one-dimensional case, SOR reduces the power of 4 from either 4 (in the case
« > 16) or from 2 (in the case a = 16) to 1.

5. Summary

In this paper we developed a technique for estimating the spectral radius of iteration matrices
associated with the biharmonic equation. We have shown that the eigenvalue estimates are
precise in many of the classical iteration schemes and can give informations on how much
successive overrelaxation can improve the convergence rate. This technique also allows us to
develop new iterative schemes where the convergence rate is considerably faster than the classical
point-iteration method.
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