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1. INTRODUCTION

The problem of characterizing functions K (t) such that the Fourier transform of K (t),
F(z):=F(z; K)=J K(t)e™ dt, (1.1)
is an entire function with only real zeros, is a long-standing open problem. The
interest in this question stems, in part, from the well-known fact that the Riemann
Hypothesis is equivalent to the assertion that the Fourier transform of ®@(t), where

(t):= Y (2n*n2e® — 3n’ne’) exp(—n’me*) 0<t< o),
n=1

has only real zeros (cf. [24] or [8]). Since today there are only a few general methods
known for studying the distribution of zeros of (1.1) (cf. Theorem 2.2 and Theorem
2.3), we propose here to reexamine this question in light of our recent results ([8],
[9]). Our goal here is to investigate the above problem by studying the interplay
between properties of K (t), its Fourier transform, the Laguerre—Po6lya class, multiplier
sequences, the moments of K (t), universal factors, Turan-type inequalities, and k-times
positive sequences.

In Section 2, we review the algebraic and transcendental characterizations of
functions in the Laguerre-Polya class, and we illustrate by examples some of the
results pertaining to this class.
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212 G. CSORDAS AND R. S. VARGA

In Section 3, we focus our attention on the relationship between properties of the
moments of K(t), multiplier sequences, totally positive sequences and k-times positive
sequences. In the course of the supplementary discussions and new observations, we
state several open problems. One of the new results in this section asserts that if
log(K(\/E)) is strictly concave for t >0, where K(r) is subject to certain regularity
conditions, then the normalized moments of K(t) satisfy the Turan inequalities
(Theorem 3.12). This result, in conjunction with Pélya’s characterization of universal
factors, enables us to establish a large class of new necessary conditions for (1.1) to
have only real zeros (Theorem 3.15).

In a subsequent paper, we will study the Turan inequalities for the Jensen
polynomials to establish necessary and sufficient conditions for (1.1) to have only
real zeros.

2. FOURIER TRANSFORMS AND FUNCTIONS IN
THE LAGUERRE-POLYA CLASS

In this section, we first recall some results concerning kernels, K(t), whose Fourier
transforms are entire functions having only real zeros. Second, we review some of
those properties of real entire functions having only real zeros, which will be used
in the sequel.

Throughout this section, we will assume that the kernel K(t), with K: R — C,
satisfies the following properties:

(i) Kand|K|areintegrable over R,
(i) K()=K(=7) (teR), and 2.1)
(iti) K(t)=O0(exp(—|t|***),a>0,ast — 0.

Moreover, we will denote the Fourier transform of K(¢) by

Flz)=F(z; K):= f " K dr. 22)

To begin, we list some known properties of F(z) defined by (2.2).

ProrosiTioN 2.1 ([23, p. 9]) With (2.1) and (2.2), the function F(z) is a real entire
Sunction of order p = p(F), where

p<*T20 o). 2.3)
a+1

There are two remarkable results, one due to Polya [23], the other due to
de Bruijn [3] (see also Ilieff [12]) which provide sufficient conditions on K(t), such
that its Fourier transform has only real zeros.
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THEOREM 2.2 ([23, p. 7]1) Suppose the function K;: R — R, is real analytic on an
interval about the origin; that is,

K(t)=Y ¢t (te(—=r,r), r>0,¢eR, k=0,1,2,...), (2.4)
k=0
and K (t) satisfies (2.1(1)) and (2.1(iii)). Then the integral
H(z)::f 271K, (1) di (ze), (2.5)

0

represents a meromorphic function. If H(z) has only real negative zeros, then the entire
function

Fq(z):=joo K, (1*%)e™" dt g=12,3,..), (2.6)

=00
has only real zeros.

THEOREM 2.3 ([3, Theorem 17) Let h(t) be an entire function such that its derivative
is the uniform limit, on compact subsets of C, of a sequence of polynomials, all of
whose zeros lie on the imaginary axis. If h(t) is non-constant with h(t) = h(—t), and if
h(t) = 0 (teR), then the entire function

Fz(Z)==J K,(t)e™ dt, (2.7)
where K,(t):=exp(—h(t)), has only real zeros.

We illustrate the foregoing results by means of the following examples.

Example 2.1 Set

F(z; p):zjOO exp(—t?) cos(zt) dt (p>1). (2.8)
0

Then Pélya [22] has shown that

. l_,<2n + 1)
p zZn

F(Z;p)=;n§0 (—1y rans)

(p>1),

where I'(z) denotes the gamma function, is an entire function of order p/(p —1). In
particular,
T

F(z;2) = <Z>1/2 exp(—z2/4)

has no zerosatall. f p=4, 6, 8, ..., then F(z; p) has only real zeros; in fact, infinitely
many. If p is not an even integer, then F(z; p) has infinitely many non-real zeros!
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Example 2.2 With K(t):=exp(—acosh t), a >0, set
F(z; K)zzj K(t)e® dt. (2.9)

Then, it follows from Theorem 2.3 that the entire function F(z; K) has only real
zeros. We remark that in [237] Polya gives an ad hoc proof of the fact that the function
defined by (2.9) has only real zeros.

Both the theoretical as well as the historical background for the study of the
Laguerre—Polya class stems from the investigation of linear operators which preserve
the reality of the zeros of certain entire functions. We will now proceed to define two
classes of these linear operators.

Definition 2.1 LetT':={y,}-, be a sequence of real numbers. Then for an arbitrary

polynomial or transcendental entire function p(x):= Y a,x*, we define I'[p(x)] by
k=0

0

TTp(x)]= ), apex, (2.10)

k=0
whenever this series converges.

Definition 2.2 A sequence I':={y,};2, of real numbers is called a multiplier
sequence of the first kind, if " takes every real polynomial p(x), with only real zeros,
into a polynomial I'[p(x)] (defined by (2.10)) having also only real zeros. A sequence
I'i={y}-o of real numbers is called a multiplier sequence of the second kind, if T
takes every real polynomial p(x), all of whose zeros are real and of the same sign,
into a polynomial, T'[p(x)], all of whose zeros are real.

In a celebrated paper, Polya and Schur [25] have provided the following algebraic
and transcendental characterizations of these sequences.

THEOREM 2.4 ([25]) Let T={y,};o be a sequence of real numbers. Then T is a
multiplier sequence of the first kind if and only if the zeros of the polynomials

n

g,(x)=T[(1 +xy]= ¥ <Z>ykxk n=1,2,3,..), 2.11)

k=0

are all real and of the same sign. The sequence T is a multiplier sequence of the second
kind if and only if the zeros of the polynomials (2.11) are all real.

THEOREM 2.5 ([25]) Let T:={y,}i%0, Yo #0, be a sequence of real numbers. Then,
in order that I" be a multiplier sequence of the first kind, it is necessary and sufficient
that the series

fl)=Tles = ¥ Pt (2.12)

k=0 k!




INTEGRAL TRANSFORMS 215

converge in the whole complex plane, and that the entire function f(x) or f(—Xx) can
be represented in the form

o

fx)=ce™ [T (1 +x/x,), (2.13)

n=1

oG
where 620, x, >0, ce R with Y, x,7' < 0. In order that T’ be a multiplier sequence
n=1
of the second kind, it is necessary and sufficient that the series

DO

flx)=T[e"] = 3 7% xk (2.14)

K=o k!

converge in the whole complex plane, and that the entire function f(x) of (2.14) can
be represented in the form

f(x) = ce™®Tbx ﬁ (1 — x/x,)e*, ' (2.15)

n=1

e}
where 4 >0, B, ce R, and each x, is real and non-zero with ) x,* < 0.
n=1

Definition 2.3 A real entire function h(x) which can be represented in the form
h(x):=x"[(x), (2.16)

where m is a non-negative integer and f(x) is of the form (2.15), is said to be in the
Laguerre—~Polya class, written h(x)e & — 2.

Remarks (a) By Theorem 2.5, we see that the two types of multiplier sequences
give rise to two types of functions in the Laguerre-Polya class. If m is a non-negative
integer, and if f(x) is of the form (2.13), then Pélya and Schur [25] termed the
function h(x):=x"f(x) as a function of type I in the Laguerre—Polya class, written
h(x)e & — 2(1). Similarly, functions of the form (2.16) where f(x) is of the form
(2.15) were termed, by these authors, as functions of type II in the Laguerre-Polya
class, written h(x) e & — 2(I1). Now it is clear that (i) if he & — 2(II), then he ¥ — 2
and (ii) if he & — 2(1), then he ¥ — 2(11).

(b) The significance of the Laguerre—Polya class in the theory of entire functions
(see, for example, [14, Chapter 8] or [17]) is natural, since functions in & — 2 and
only those, are the uniform limits, on compact subsets of C, of polynomials with only
real zeros (cf. [19]).

(c) Consider the sequence I':={k},, corresponding to the entire function
f(x)=xe*e ¥ — #(1). Then for any polynomial p(x), we have I'[p(x)] = xp'(x). For
this reason, the operators I' have been studied as generalized forms of differentiation
(see, for example, [5], [6], and the references cited therein).
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Example 2.3 (a) Let Q(x) be an arbitrary real polynomial with only real negative
zeros. Let T':={y};2,, where y,:=0Q(k) (k=0,1,2,...). Then, it follows from a
classical theorem of Laguerre [17, p. 6], that I' is a multiplier sequence of the first
kind. Moreover,
© Q(k
Ie’]= Y %—) xke &L — 2(I). (2.17)

k=0

(b) Set T':={y,},, where yp=(—1)" if k=2m and y,:=0, if k=2m+1
(k=0,1,2,...). Then I'[e*] =cos(x)e ¥ — Z(Il) and so, by Theorem 2.5, ' is a
multiplier sequence of the second kind.

(c) Let m be a fixed positive integer and set I':= {y,} % o, where

'})k::yk(m):z (k = 0, 1, 2, . ) (218)

k!
(mk)!
Then, it is known that I" is a multiplier sequence of the first kind (cf. [17, p. 44]).
Thus, it follows from Theorem 2.5, that the particular Mittag—Leffler function

0 xk

Enl0)= 2 Gt

m=1,2,3,..), (2.19)

is a function of type I in the Laguerre—Podlya class (see also [21]).

In terms of the foregoing notations and results, our goal in the subsequent sections
is to investigate K(¢) (cf. (2.1)) such that its Fourier transform will enjoy some of the
properties of functions in the & — 2 class. To see that such an undertaking is feasible,
we remark that de Bruijn [4, Theorem 4] has shown that if f(z) is any function in
& — 2, then there is a uniquely determined continuous function K(t):=K(t; f ) such that

0

exp(—z2/2)- f(z) = f K(t)e™ dt. (2.20)

— o0

However, as we have noted above, the complete characterization of K(t)is not known.

3. MOMENTS AND PROPERTIES OF MULTIPLIER SEQUENCES

Henceforth, we shall assume that the kernel function, K(t), satisfies (2.1) and the
following properties:

(i) K(t)>0(teR),

(i) K'(t)<0(t>0),and
(iii) thereisa positive number 7:=1(K)such that K(¢)is analytic in the strip
' S(t):={zeC:[Imz| <1}.

(3.1)
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Lemma 3.1 With (3.1), set

o0 ot o0 b
F(x):=F(x; K)= J_ . K(t)e* dt = ’Z;O (—1) (2’:)! x2k, (3.2)
where
b,;:J t?* K (t) dtzzf 2K K (t) dt (k=0,1,2,...). (3.3)
Set - ’
0 oo k
F.(z2)=F,(z; K):sz K(t) cosh(tﬁ) dt= Y yk%, (3.4)
where - e .
K b k=0,1,2 3.5
yk"(i;ﬁ k ( — Vs 7) ( . )

Then, F(x)e & — 2?(1) if and only if F(z)e ¥ — P(1). Moreover, F(z)e & — 2 (1) if
and only if {7}i% ¢ is a multiplier sequence of the first kind.

Proof By Proposition 2.1, F(x) is an even, real entire function of order less than
2. Also, it is easy to see that, for any choice of a branch of the square root, F,(z) is
well defined. Next, by using the change of variables z = —x?, we deduce that F,(z)
is a real entire function of order less than 1. The same change of variables shows
that a complex number w,, is a zero of F(x) if and only if z, = —w3 is a zero of F,(z).
Since K(t)> 0, for all ¢ in R, we observe that y,>0 (k=0,1,2,...), and that any
real zero of F,(z) is necessarily negative. But if a function in % — 2 has only positive
Taylor coefficients, then it is necessarily a function of type I in ¥ —2 (see, for
example, [25]). Combining these observations, it follows that F(x)e ¥ — 2 if and
only if F,(z)e & — 2(1). Since y, >0 (k=0, 1,2, .. .), the last assertion of the lemma
is a consequence of Theorem 2.5. B

Remarks (a) By (3.1) we have

F(z)= J ) K (1) exp{ty/z} dtsz K(t) exp{—t./z} dt. (3.6)

(b) We recall that the Hadamard product (or composition) of two sequences {a =
and {B,}i-,, of complex numbers is defined by

(oo * {Buiz o= 1{Pili=o- (3.7)
k!
Now, by Example 2.5(c) (cf. (2.18)), the sequence {m} is a multiplier sequence
k=0

of the first kind. Thus, by Lemma 3.1, F.(z)e % — 2(1) if and only if the Hadamard

k! )
product {(Zk)'} s {b}- o is a multiplier sequence of the first kind, where b, is
k=0

defined by (3.3).
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The following known result provides a collection of necessary conditions for a
function to be in the Laguerre~Polya class.

Treorem 3.2 ([13], [18], [25]) Set

fx)= i T gk, (3.8)
k=0 k!
If f(x)e ¥ — P, then
Ela) yl%ZVk—lyk-Fl (k=1> 2> 3a"~)> (39)
an
A(n> m):: zzn: S-:“zl)k:n <2kn>’ym+k’y2n+m—-k 2 05
(b) «=o (2n) (3.10)

(forallm,n=0,1,2,...).

Remarks (a) Inequality (3.9) is frequently termed as the Turdn inequality asso-
ciated with f(x) of (3.8). Since, in the special case n = 1, (3.10) reduces to (3.9), i.e.
A(l;m—1)=yp—Vpo1Vm+1=0,m=1,2,3, ..., Patrick [18] termed the inequalities
(3.10) as the extended Turdan inequalities.

(b) The extended Turan inequalities were first introduced in 1913 by Jensen [13].
Unaware of this work of Jensen, Patrick [18] in 1973 independently rediscovered
inequalities (3.10). We hasten to note here that, while Jensen [13] did not provide
detailed verification of (3.10), the proof of (3.10) presented in [18] is rigorous and
complete.

(c¢) If y, is defined by (3.5), then the extended Turéan inequalities, with m = 0, take
the form

A(n; 0 :it(*:l)—f J K(u)K(v) Re[(u + iv)*™] dudv =0 n=0,1,2,..)
@)t Jo Jo
(3.11)
(d) In general, for a real entire function with non-negative Taylor coefficients, it
is possible for (3.9) to hold, while it is possible for some of the extended Turan

inequalities (3.10) to fail. As an example, set

x 1x% 1x% 1x*
e R TR
fulx) TR TR

(3.12)
In this case, yo:=1,p,:=1, y,:=2""¥ ifk=2,3,4,and y,:=0if k= 5,6, 7, ... . Thus,
we see that

Vl%>3’k—17)k+1 (k=1,2,3,...),
but

1 1
A(2;0)=~56— and A(2;1)=_T9§_
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PROPOSITION 3.3 With (3.1) and (3.2), if F(x)e & — 2 then there is a positive integer
mg such that

Jw tP*qOK@)dt=0  (k=my), (3.13)

e £}
where
t# t?

- - +1
42k +3)2k+1) (2k+1)

q(t): (k=0,1,2,...). (3.14)

Proof 1fF(x)e ¥ — 2, then by definition, F(x)e ¥ — 2(II). Thus, by Lemma 3.1,
F.(z)e & — 2(1) (cf. (3.4)). Consequently, by Theorem 3.2 the sequence {7 }i- o, Where
y, is defined by (3.5), satisfies the Turan inequalities (3.9). But then by a known result
[7, Theorem 4.6], there is a positive integer m,, such that the sequence Mitizo 1s
convex, that is,

Vv — k+1 T2 =0 (k= myg). (3.15)

Therefore, if we express (3.15) in terms of (3.3) we obtain the desired result (3.13).
[ ]

Remarks (a) With (3.5), suppose the sequence {y,}i-o satisfies the Turdn
inequalities (3.9), and, in addition, y,>7,, so that 1>ﬁ>yi>b> ... Then it

Yo V1 V2
directly follows that the sequence {y,};~, is monotone decreasing; that is

Vk>yk+1 (k:0> 1927) (316)

In particular, in terms of (3.3), ineqﬁality (3.16) becomes

hy>— b k=0,1,2,...), 3.17
k 2(2k—+—1) k+1 ( ) ( )
or
o) 2
J t2k<1— ! *>K(t)dt>0 (k=0,1,2,...). (3.18)
. 202k + 1)

(b) If we apply the Cauchy-Schwarz inequality to (3.3), then we obtain
b2<by_ byt k=1,2,3,...). (3.19)

On the other hand, if the y,’s defined by (3.5) satisfy the Turan inequalities, then

) kUYL, 2k—1
Vi~ Ye—1Vk41 = @; bk‘mbk—lbkﬂ =0 k=1,2,3,...), (3.20)

which is nearly the reverse of inequality (3.19).

(¢) The assumptions on K(t) (cf. (3.1)) imply that there is a non-negative integer
ko such that the sequence of moments, {b};2, (cf. (3.3)) is increasing for k = k.
Indeed,
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by —be=2| 1K) dt

Jo

,‘(X) 1

J1 0

r oo 4

>2| (2 —1)K()dt — K(0) ———
J1 2k + 1)2k + 3)

if k is sufficiently large. In fact, an elementary argument shows that the function

>0,

o

1
f@)=3} —z% (3.21)
k=0 by
where b, is given by (3.3), is an entire function [11, Lemma 1].

We next consider the problem of completely characterizing functions

o)=Y axti=1+ Y Tkxk
k=0 K=o k!

(3.22)

<ak==%20,k= 1,2,3, ... do =70 = 1),
of type I in the Laguerre—Polya class, normalized by f(0)=1, in terms of the
coefficients a,. To this end, we recall here the following definition.

Definition 3.1 A real sequence {a,};-, ao:=1, is said to be totally positive, if the
infinite lower triangular matrix

a 0 0
a, a, O
A=[a_J=| * ° (i,j=1,2,3,...), (3.23)

a; ag 4y

where a,,:=0 for m <0, is totally positive; that is, all the minors of A4, of all orders,
are non-negative.

In [1], Aissen, Edrei, Schoenberg and Whitney characterized the generating

0

functions f(x):= Y a,x* of totally positive sequences. Their result is
k=0

THEOREM 3.4 ([1, p.306]) Suppose f(x)defined by (3.22) is an entire function. Then
{an}io s a totally positive sequence if and only if f(x)e & — 2(1).

An immediate consequence of Theorem 3.4 is the following
CoroLLARY 3.5 ([1, p. 306]) Set
p(x)=ay+a;x+---+a,x" (ao=1,a,20,k=1,2,...,n). (3.24)

Then, p(x)e &£ — P(1) if and only if the sequence a,, a,, . ..,a, 0,0,0,... is totally
positive.
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In light of Theorem 2.5, another consequence of Theorem 3.4 is the following
corollary.

COROLLARY 3.6 Let {y.}i= be a sequence of non-negative real numbers, normalized
by yo:=1. Then, {y}i=0 is a multiplier sequence of the first kind if and only if the

sequence % is totally positive.
D=0

The foregoing results lead to the formulation of the following

Open Problem 3.1 With (3.1) and (3.3), characterize the kernel K(t) such that the

b 0
sequence {—k} is totally positive.
(2K k=0
We briefly pause here to further elucidate upon the ideas developed so far. By
(3.19) the moments b, of (3.3) necessarily satisfy

b2<by birs  (k=1,2,3,..). (3.25)

Now, if in (3.25) the inequality reduces to equality for all k (k=1,2,3,...), then it
follows that

by=bo(by/bo)  (k=0,1,2,...). (3.26)

But using (3.2), (3.26) implies that F(x; K) = b, cos(x bl/bmo) and this is incompatible
with our assumptions (3.1). Thus, for at least one integer k, k > 1, there is a strict

. . . &b
inequality in (3.25). But then by Theorem 3.2 (cf. (3.9)), the entire function ) i; xk
k=0

b oo}
is not in the Laguerre—Po0lya class. Hence by Corollary 3.6, the sequence {}(-"‘} is
k=0
not a totally positive sequence.
While Open Problem 3.1 appears to be very difficult, we propose here some related,
but tractable, questions which arise when we generalize the concept of totally positive
sequences. Following Fekete and Polya [10] and Schoenberg [26], we recall here

the following
Definition 3.2 Let k be a positive integer. Let {a,} o, With a,:=1, be a sequence

o0
of non-negative real numbers such that the series ) a, is convergent. Then the
n=0
sequence {a,} = is said to be k-times positive, or k-positive, provided that the matrix
A:=[a;_;] of (3.23) has no negative minors of order <k.
If we denote by Z, the class of k-times positive sequences, then it is evident that

(@13@2:},..3%3...’ (3.27)
whose intersection

2,= () % (3.28)
k=1

is the class of totally positive sequences, denoted by Z,.
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For the various properties of k-times positive sequences we refer the reader to
Schoenberg [26]. We single out here the following useful device for generating k-times
positive sequences.

ProposITION 3.7 ([26]) Set

plx)= i p;x’, (3.29)
j=0
q(x)= Z q;x7, (3.30)
and ’
r(x):=p(x)g(x)= Y. rx’. (3.31)
j=0

(@) If the coefficients of both polynomials p(x) and q(x) are k-times positive, then
the coefficients of the product (3.31) are also k-times positive.

(b) Let t, be a fixed positive number. Then, the coefficients of p(x) are k-times
positive if and only if the coefficients of p(xt,) are k-times positive.

We next establish a new relationship between 2-times positive sequences and
sequences which satisfy the Turan inequalities (3.8).

PROPOSITION 3.8 Let {y,}:2, be a sequence of positive real numbers, normalized by
vo:=1.If

then {ﬁ} €.
n! n=0 '

Proof By (3.32), we have the inequalities

%Z;“Yn—ﬁnH?O (nzla 25 39"')? (332)

&>Xg>...>7}"+1>..., (3.33)
Yo 71 7n
and therefore
lim /"1 =R, >0. (3.34)
n— o0 ’yn
Consequently,
f(z): & Z'l (335)
n=0 n!

is an entire function and thus the requirement that (3.35) converges for z=1 (cf.
Definition 3.2) is satisfied. Next, it follows from (3.33) that y,,/V -, = Vim+e/Pm+a-»p
(p=0, m=p, q>0), whence

det[ ym ym—p:|>0 (y—nzzoaifn>lsp’q=15273a'~'5m:05172:°'-)'
ym+q Vm+q—p

(3.36)
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In addition, if m— p >0, then

Ym Ym—p
m! (m—p)!
det =0 m=1,2,3,...). (3.37)
ym+q '))m'!-q—p
(m+q)! (m+q-—p)
Therefore, by Definition 3.2, {Zﬁ‘} €. B
n. n=0

Remarks (a) It is easy to construct examples which show that the converse of
Proposition 3.8, in general, is false. As an example, consider y,=((n+ IS

(n=0,1,2,...). Then yo=1, ) Xf'<oo,y,2,~—y,,,1y,,+1<0,n=1,2,3,...,Whilea
n=0 !

calculation shows that inequality (3.37) holds. Thus, {y—’;} €%, but (3.32) does
n 0

=

not hold.
(b) A geometric characterization of the class 2, is as follows (cf. [26]). Let {a}eos

ag:=1, be a sequence of positive numbers with Y a, < oo. Then {a,},> €%, if and
n=0

only if the polygonal line in the xy-plane, with vertices (x, y), where x:=n and

ye=loga,, n=0,1,2,...,is concave, i.e., log a,., = (log a,, +log a,)/2 for n > 0.

Open Problem 3.2 Find a geometric characterization of the class of k-times positive
sequences, %, where k=3,4,5,.. ..

Open Problem 3.3 With (3.1) and (3.3), characterize K(t), such that the sequence

b [ee]
{(?%} is k-times positive, for k=2,3,4,....
m)!

m=0
While we are unable to solve Open Problem 3.3, even in the special case when
k =2, we will provide below two different conditions, such that if K () fulfills either

. m! . - o .
of these conditions, then the sequence {m' bm} satisfies the Turdn inequalities.
m)!

. b, |®
But then by Proposition 3.8, { m—} €P,.
@m)1) -0
The aforementioned conditions will be established via three preliminary lemmas.
The proof of the first lemma is based on an idea of Matiyasevich [15].

m=0

LemMa 3.9 ([15]) With (3.1), set

= n(K) 1= f j [~ 12+ 2 — 2+ 12 K (u) K (v) du dv

0 o (3.38)
mn=1,2,3,...).
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If log(K(\/i)) is strictly concave for 0 <t < oo, then
Jpn + >0 mn=1,2,3,...). (3.39)

Proof 1f log(K(\ﬂ)) is strictly concave for 0<t< oo, then an elementary
calculation shows that

But the“

1 o0 ¢ v
Jon+ Iy = 5 J f W™K (u)K (v)(v* — uz)(j E(¥) dt) du dv
0 0 u
(mn=1,2,3...).
Therefore, by (3.40) and (3.41) the desired conclusion (3.39) follows. |

(3.41)

The next lemma is of independent interest and it may be used to give an alternative
proof of Theorem 3.12. This lemma is a refinement of a result of Barlow, Marshall
and Proschan [2] (cf. Csordas and Varga [9, Proposition 2.3] or Marshall and Olkin
[16, Proposition E.41).

LemMa 3.10 ([2], [9], [16]) With (3.1) set
1 o0
(x)::_rmfo PR(/Dde (x> —1), (3.42)

where I'(x) denotes the gamma function. If log(K(\ﬂ)) is strictly concave for 0 <t < oo,
then u(x) is strictly concave for —1 <x < oo.

Remark The connection between Lemma 3.10 and Theorem 2.2 is particularly
interesting. By (3.1(iii)) we know that if

K (t)=K(/t) (t=0), (3.43)

then there is a positive number R(= (t(K))"/?) such that K is a real analytic function
in [t| <R, ie.,

K,(t)= i c;t! (te(=R,R), c;eR); (3.44)

j=0
so that assumption (2.4) of Theorem 2.2 is fulfilled. Now for 0 <r < R, we set -

H,(z)= chtf”dwrj FK () dt  (Rez> —1), (3.45)

0 j=0

and therefore by the absolute and uniform convergence of the power series (3.44),
we have that for 0 <r <R,

© Vo o
Hz)=r' Y H‘%rfﬁf Ki(e9e " Mdy  (Rez> —1). (3.46)
ji=0 it

ogr
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Since the integral in (3.46) represents an entire function and since z= —n
(n=1,2,3,...), is a simple pole of the sum in (3.46), and hence also for H,(z), it
follows that

pu(z)= Hi(z)  (zeC), (3.47)

T'(z+1)
where I'(z) denotes the gamma function, is a real entire function (cf. [23, p. 15]).
Therefore, if u(z) has only real negative zeros, then by (3.43) and Theorem 2.2

Fz(z)::r K, (t})e™ dt = j " Ke die & — 2. (3.48)

o0 —

Another type of condition on K (¢), which is different from those assumed in Lemma
3.9 and Lemma 3.10, is used in the following lemma. It is a generalization of a result
of [8, Proposition 2.1].

Lemma 3.11 ([8]) With (3.1), set

I(t)= f : K(/s)ds  (t>0), (3.49)

and

e J Slwdu (x> —1), (3.50)
X

0

where T'(x) denotes the gamma function. If log(I(t)) is strictly concave for 0 <t < co,
then log(u(x))) is strictly concave for —1 <x < co.

Remark 1If we set
g(t)=g(t; K):=t[(K'())* = K@)K" ()] + K()K'(t)  (¢>0), (3.51)

then it is easy to verify that log(K(\/E)) is strictly concave for 0 <t < co if and only

if g(t) > 0 for t > 0. Thus, by (3.51) and (3.1(), (ii)), the strict concavity of log(K(\/i))
for 0 < t < oo implies the strict concavity of log(K (t)) for 0 < ¢ < co. But the condition
that log(K (¢)) is strictly concave for 0 <t < c0, is not strong enough for our purposes
to deduce the Turan inequalities (3.20). Similarly, in reference to Lemma 3.11, we
note that log(I(t)) (cf. (3.49)) is strictly concave for 0 <t < oo if and only if

h(t):=h(t; K)= (ﬁn sK(s) ds)K’(t)+ t(K(t))* >0 (t>0). (3.52)
Setting t
Il(t):zj K(s) ds (t>0), (3.53)

then log(I,(t)) is strictly concave for 0 <t < oo if and only if

hy(t)=h,(t; K)=1,(0)K'(t) + (K®)?>0  (t>0). (3.54)
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Now by (3.1(31)), K'(t) <0 for t > 0 and thus using (3.52) and (3.54),

thy(t) > h(t) (t>0) (3.55)
if and only if

tI,(t) < J “sK@s)ds  ((>0). (3.56)

Therefore, upon integrating by parts, we have

0

on sK(s) ds=t11(t)+J. I,(s)ds (t>0). (3.57)

t

So by (3.54)-(3.57), if log(I(¢t)) is strictly concave for 0 <t < oo, then log(I,(¢)) is also
strictly concave for 0 <t < oo. Once again, this latter condition does not imply, by
our methods, the Turan inequalities (3.20). Indeed, the new and essential idea in the
foregoing lemmas is that the hypotheses involve the modified function K (\/t), rather
than the kernel K(r) itself.

Preliminaries aside, we now prove

THeOREM 3.12  With (3.1), set

bm==2f tmK(t)dt  (m=0,1,2,...), (3.58)
0
and
m 0,1,2 3.59)
};m._(z—m)-! n m=0,1,2,...). 3.

If log(K(\ﬁ)) is strictly concave for 0 <t < oo, then
yrzn>ym-1ym+1 (m=1, 27 3:- ) (360)

Moreover, {Vm} eP,.

m: m=0

Proof By Lemma 3.9, J,,,,>0 (cf. (3.38) and (3.39)) form=1,2,3,.... Now, if
we integrate (3.58) by parts, we obtain

bmz_:Lj PP dE (m=1,2,3,...). (3.61)
@Em+1) ),

Therefore, with n =m and using (3.61), we have
4 =14 J J [um=1p2m* 2 — 2m T 12 K (w) K (v) du dv
0 0
=—02m—1)b,,_ b1+ 2m+1)b2 >0 m=1,2,3,...). (3.62)

Thus, (3.62) implies (3.60) (cf. (3.20)). Furthermore, by Proposition 3.8, {z—'f'} €%,
m!
|

m=0
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In view of Theorem 3.12, it is natural to raise the following question.

Open Problem 3.4 Is it true that the extended Turan inequalities (3.10) are also

a consequence of the assumption that log(K(\ﬂ)) is strictly concave for 0 <t < oo,
where K(t) satisfies (3.1)?

If log(K (\/E)) is concave for 0 <t < oo, then Lemma 3.9 can be used to generate
various types of inequalities involving the moments (3.58) (see also [15]). However,
apart from (3.60), we do not know whether or not such inequalities yield, ipso facto,
necessary conditions for the entire function

F(x)::F(x;K)——*JOO K(t)e™ dt, (3.63)

- 0

to have only real zeros. In contrast, by means of Polya’s universal factors (see
Definition 3.5 below), it is possible to generate a plethora of the required necessary
conditions. To motivate Pélya’s notion of a universal factor, we first recall (cf.
Section 2) that multiplier sequences may be regarded as generalized forms of
differentiation. But since the Laguerre-Polya class is closed under differentiation
(that is, if f(x)e ¥ — 2, then f'(x)e ¥ — 2; see, for example, [25]), it is natural to
investigate the actions of more general differential operators on the class & — 2. By
extending the classical Hermite—Poulain Theorem (see, for example, Obreschkoff [17,
p. 4]), to transcendental entire functions, Polya (cf. [20, p. 242]) has shown, in
particular, that if f(x), F(x)e ¥ — 2 and if the series

H(X)::H(x;f, F):: Z %F(k)(x), (364)
k=0 K-
converges, where
fx)=Y 2k, (3.65)
ko k!

then H(x)e ¥ — Z.

Definition 3.5 ([23], [3]) With (3.1), suppose that

F(x):==F(x; K)::JOo Kt)e? die & — 2. (3.66)
0

Then a function U(t): R — R is called a universal factor, if
J Ut)K(t)e® dte ¥ — 2. (3.67)

The following theorem of Polya [23] provides a complete characterization of
universal factors.
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THEOREM 3.13 ([23]) Set

Ult)= 3 %t" (te(—o0, o), 2 eR). (3.68)

k=0
Then U(t) is a universal factor if and only if U(t) = f(it), where f(t)e ¥ — 2.

Therefore, if U(t) = f(it), fe # — 2 and if F(x)e ¥ — 2, where F(x) is given by
(3.63), then

H(X)==f(D)F(x)=F Fi)K(t)e™ dr (D::%)

X

- J " VKW die s — . (3.69)

o0

To generalize Theorem 3.12, we need the following proposition (cf. Csordas and
Varga [9]).

ProrosiTiON 3.14 ([9]) Let f(z)e & —P, where [(z) is even, f(z)#0, and

normalized so that its first non-zero Taylor coefficient is positive. Then log( f (l\/ t)) is
concave for 0 <t < o0,

Proof Using the representation (2.16) and the assumptions of the proposition,
we deduce that

fan=c [T A +227) (<), (3.70)

i=1

()
where z;e R — {0}, ) z7? <00 and ¢ > 0. Then a computation shows that
j=1

hl 1og(f i/1) = —{~ ) (——iT)}w (t>0). ® (3.71)

t2

THeOREM 3.15 ([9]) With (3.1) suppose that log(K(\/ t)) is strictly concave for
O<t<oo. Let f(z)e ¥ — 2P, f(z)#£0, be an even entire function, normalized so that
its first non-zero Taylor coefficient is positive. Set

cm(K;f):J‘O0 2" f(it) K (t) dt m=0,1,2,...). (3.72)
Then ’
2m—1

(Cm(1<;f))2><2 >Cm-1(K;f)Cm+1(K;f) (m=1,2,3,...). (3.73)
m+ 1

Proof Set V(t):=f(it)K(t), t=0. Then by (3.1) and the assumption that
feZ —2, we have V(1) satisfies (2.1). Thus, in particular, the moments (3.72) all
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exist (cf. Proposition 2.1). Also, by Proposition 3.14, log(V(\/E)) is strictly concave
for t > 0. Set

=K )= e (K f) m=0,1,2,..). (3.74)
2m)!

Then by Theorem 3.12
yr2n>ym—1’ym+l (m=192>33~")' (375)
Since (3.75) is equivalent to (3.73), the proof of the theorem is complete. ]
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