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Chebyshev semi-iterative methods,
successive overrelaxation iterative methods,
and second otrder Richardson iterative methods
Part I
By
GENE H. GOLUB* and RICHARD 5. VARGA

§ 1. Introduction

One of the major areas of interest in numerical analysis is concerned with
the numerically efficient solution of the matrix equation

(1.1) A% =k,

where A is a given N x N real symmetric and positive definite matrix, and kis a
given column vector. The matrix equation (1.1) can be readily reduced to the
analogous matrix equation

(1.2) ¥=B% ¢,

where B is an N X N real symmetric matrix which is convergent, i.e., if the eigen-
values of the matrix B are u;, 1</<N, then the spectral radius [9] ¢ (B) of B
satisfies

(1.3) o(B) = max| | <1.

At this point, one can consider the different convergent systematic iterative
methods in the title of this paper, and basically, the literature on the analysis
of these methods can be conveniently separated on the following classification
of the matrix B. With B symmetric, we say [20] that B is cyclic (of index 2)
if there exists an N X N permutation matrix / such that

(o F\ ~
1. ABAT = = B,
(1.4) (F O)

where the non-vacuous diagonal blocks of B are square, with zero entries. In

the more familiar notation of Younc [24, 26], B satisfies property 4, and B
is consistently ordered with the ¢, ordering. If no such permutation matrix A
exists, we say that B is primitive**.

* This paper includes work from the doctoral dissertation [7] of the first author,
who wishes to thank Professor A. H. Taus of the University of Ilinois for guidance
and encouragement in the preparation of that dissertation.

** Usually, the terms primitive and cyclic are reserved (sec [23]) for irreducible
matrices with non-negative entries. In the case that the matrix B of (1 .2) is symmetric
and irreducible, with non-negative entries, these definitions agree with the classical
terminology.
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If B is primitive, then the only systematic iterative methods of the title
which have been analysed* and used in large scale digital machine codes are
the Chebyshev semi-iterative method [4°, 11, 16, 18, 257, and the second order
Richardson iterative method [6, 73]. Actually, one can also define the successive
overrelaxation iterative method [6, 26] for an expanded matrix equation of the
form (1.2), and in §2, our first result is that all three methods, when optimized
with respect to acceleration parameters, are from a certain point of view remark-
ably similar**. In §3, we shall compare these three systematic iterative methods,
using the spectral norms of the respective matrix operators as a basis for com-
parison, and we shall show that the matrix operator for the Chebyshev semi-
iterative method possesses the smallest spectral norm. Since the practical
application of the Chebyshev semi-iterative method in the primitive case requires
etfectively no additional arithmetic operations or vector storage over the other
iterative methods, it would appear that of these three systematic iterative
methods, there is no practical or theoretical reason for not always using the
Chebyshev semi-iterative method for the primitive case.

If B is cyclic, then several results already exist in the literature [13, 18, 25, 27]
comparing the three basic systematic iterative methods of the title. In §4, we
shall define a new systematic iterative method, called the cyclic Chebyshev
semi-iterative method for cyclic matrices B, which again requires effectively no
more additional arithmetic operations or vector storage over the other iterative
methods. This new systematic iterative method, which has combined the ob-
servations of several others, will be shown in §5, using spectral norms of matrix
operators as a basic for comparison, to have the smallest spectral norm. Again,
of the three systematic iterative méthods of the title, it would appear that the
modified Chebyshev semi-iterative method is the best choice in the cyclic case.

In §6, we shall show how these results can be used in conjunction with
various block methods [7, 8, 12, 21] to numerically solve elliptic difference
equations, and finally in §7, we shall give some of the results of recent numerical
experiments on the comparison between the systematic iterative methods of
the title.

§ 2. Primitive Matrices

We assume in this section that the matrix B of (1.2) is primitive. If Z© is
a given vector guess of the unique solution ¥ of (1.2), then we iteratively form
the vectors %“*Y, defined by
(2.1) @t = Bu 4 ¢, 120.

Since g (B)< 1, the sequence vectors &” converges [9] to the solution vector 7.
If €9=% 51 >0, is the error vector associated with the iterate % then

(2.2) EHY = BEO), 120,
and thus, by induction
(2.2) 0 = BiEo, 1=0.

* A notable exception to this is Kagan’s theoretical extension [10] of the suc-
cessive overrelaxation iterative method to the case where B is primitive, and has
non-negative entries.

** It has been generally assumed that the successive overrelaxation iterative
method could not be applied in as general cases as could the Chebyshev semiiterative
method. See [27, p. 291].
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We now consider forming linear combinations* of the vectors o' in order
to accelerate the convergence of (2.1). Let

— i
(2.3) B = Z ai,k?i(k), 1=0.
As in [18], we impose the natural condition that Z 0% ,=1. Thus, if £0=7%— ‘é(“,
1220, then ’

(2.4) 20 = ( Z a; Bk) B0}
It p,(9) Zat1 7%, then (2.4) becomes formally
(24) &0 = (B) €W,

where p;(1)=1. Let {#;}}_; be an orthonormal set of eigenvectors of B, where

By, =p;v;, 1=1=<N. If €= Z ¢V, then it follows that
=1

e N
(2.5) £ =3 ¢y b (1) Vi

k=1

If all the eigenvalues u; of B were known a priori, then we could determine
a polynomial py (x) such that py(u;) =0 for 1=k=N. Since this is seldom the
case, let S,, be the set of all pelynomials p,, (%) of degree , normalized so that
pn(1)=1. Since B is symmetric and convergent, all its eigenvalues u, satisfy
—1< —o(B)=u;=0(B)<1, and we seek** the polynomial $,, (¥) for which
(2.6) Jmin [ max |, (x)]} = max [f,(x)],
where p=p0(B). As is well known [4], the umique solution of this problem is
given explicitly by

¥ Cm (%[0 () ~
2. = s =0,
(2.7) P = om0
where }
cos (m cos™t x), x<1, m=0,
@8 Gy =]t
cosh (m cosh™ x), x=1, m=0,

is the Chebyshev polynomial of degree m. Since the Chebyshev polynomials
satisfy the well-known recurrence relation

(2.8) Coin () =25C,y(0) — Cppa(a),  m=1,

where Cy(x)=1, C,(x)=2x, we can use (2.8") to deduce a recurrence relation for
the polynomials $,,(x) which, when inserted into (2.4'), leads to the following

* This is called “linear acceleration” by ForsvyTHE [§]. Professor A. H. Taus
has kindly pointed out to us that these results were known much earlier to voN NEU-
MANN. See [2].

** If B is known to be non-negative, irreducible, and primitive, then the smallest
interval @ <<x < b which contains the eigenvalues of B is such [23] that |a| <b=g(B).
‘While this change in the problem of (2.6) would result in improved convergence rates,
it is in general difficult to obtain the lower bound in practical problems.
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relationship * for the vectors f:

(2.9) BN = {BAY g — I, iz
where
2C;(1/0(B)) -
. . i1 T =~ , = ’I B = 1.
(20) DTGB Gy (e 0 o !

With w;=1, (2.9) reduces to fW= BB® - ¢= By 47, since f0 =", Using
(2.8’), we can also express the parameters w;,; as

. 2
(21 1) W1 == T e N ? Z 2: Wy = 1 y W = 24é2 s

which is more convenient for actual computations. From (2.9), we notice that

the determination of vector iterates f_})(“ does not require the computation or
storage of the auxiliary vector iterates & of (2.1).

Having described the Chebyshev semi-iterative method, we now consider
the successive overrelaxation iterative method of Younc and FrRANKEL [6, 26],
applied to the matrix equation (1.2) where B is primitive. Without making
further assumptions on the matrix B, such as B having entries only of one sign
[10], successive overrelaxation applied directly to (2.1) has not as yet been
completely rigorously analysed. We now show that by considering matrix
equations with twice as many components, successive overrclaxation can be
rigorously applied to a system of equations derived from (1.2). From (1.2),
we consider the coupled pair of matrix equations

2.12) . S
( y=B¥+g,

which in matrix notation becomes

, x (0B ra g
212 (;7)“(8 o>(y) *(g’)
If
(2.13) ﬁ(é f)

then the matrix [ is also convergent, and ¢(/)=p(B). Since p(B)<1, there

is a unique solution of (2.12), and evidently ¥ =¥.
The successive overrelaxation iterative method applied to (2.12’) is defined by

“r(mA1) __ T (m) fBAm g g m)
X w X 3
(2.14) { FoBy™+¢ 5

=%
FOH G0 | (BEED LGy =0,
where o is the relaxation factor, and X©, §(© are initial guess vectors. Since
the matrix J of (2.13) is evidently real, symmetric, cyclic, and consistently ordered
in the sense of YouNG [26], then we can apply the general theory of successive

* This is a somewhat simpler computational form of the recurrence relationship
than is found, say, in [§’, 16, 18].
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overrelaxation due to Youna [26] to (2.12'), and the optimum value of w is
given by ‘
2 2
(21 S) Wy =— - == T,
"afiel) 1+ li—ed)
To show the similarity of (2.14) to (2.9), we now define a sequence of vectors %,
where

—

Fen 30
{E(zzﬂ) —F0, =o0.

]

(2.16)

In terms of the vectors E‘”, we can write (2.14) in the compact form

(2.17) E(erl) —w{B Fom . 8m~1)} + gm——l)) —

where 80), and 81) are given vectors guesses. Thus, we conclude that the suc-
cessive overrelaxation iterative method applied to (2.12") is in the same form
as the Chebyshev semi-iterative method of (2.9), except that in (2.9) the
relaxation factors vary with iteration, whereas in (2.17) the relaxation factor
® is fixed. Even more interesting is the fact that the numbers w; of (2.11) are
strictly decreasing for =2 (0<<g(B)<(1), and, as can be readily exhibited,

2.1 8 hm Wy, — ——— e — & Wy,
( ) m—00 1+V1__92(B> b
where w, is defined in (2.15).
We now consider the second order Richardson iterative method [6, 13],
which is defined from (1.2) by

(240)  FOHD =G0 L g fBH0) g 7} 4 BLTN GOy =,

where 7@, 37 are given initial vector guesses to the unique solution ¥ of (1.2),
and « and f§ are fixed acceleration parameters. If ’=g —a, this is equivalent to

(2'19’) 77’(4%+1) — ﬁ(m) + a{B 77(740 +§ _ 177(%—1)} _{_‘3'{7‘7’(”&) - ’ﬁ(m—l)}’ m=1.

One can extend the analysis of FRANKEL and RiLEY [6, 26], and the best
acceleration parameters, those giving the fastest asymptotic convergence, are
given* by

(220) L= ! = 1.

With this choice of parameters « and §’, we see that the second order Richardson
iterative method of (2.19') is identical with the successive overrelaxation iterative
method of (2.17), with w=w,. Of course, R1LEY [13] pointed out this correspond-
ence in the case of the numerical solution of the Dirichlet problem.

Having compared three systematic iterative methods for solving (1.2) when
B is primitive, we see that each method, when optimized, bears a strong resem-
blance to the other methods. In the next section, we shall compare these three
iterative methods using the spectral norms of the corresponding matrix operators
as a basis for comparison.

* See also [22, p. 485].
Numer. Math. Bd. 3 11
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§ 3. Primitive Matrices: Comparison of Methods
As in the previous section, we assume that B is real, primitive, and symmétric

with {3;}i_; as an orthonormal set of eigenvectors of B. If, as in §2, €© = Z Cx Vr
then Euclidean norm of 8 is defined by k=1

6.1) o) =( 3ol

To review some facts [9] concerning norms of matrices and vectors, let M be
any real N x N matrix. For any real vector ¥ with N components, then from
y = M7, we have

(3.2) |7 = M%< (M) %],
where
(3.3) (M) = [o(MT M)]%

The quantity 7 (M) is called the spectral norm of the matrix M. Characterized
in a different manner, we have that

3.4 C rpn=max I

H:‘;O (K7
It is clear that if M is symmetric, then the spectral norm 7 (M) of M coincides
with the spectral radius g (M) of M.

For the Chebyshev semi-iterative method of (2.9), we have that Fo—g0o

and £0m — 3 _(B) €0, Thus

(3-5) [ o (Ba(B) [0l mzo.
Since the matrix B is symmetno so is the matrix $,,(B), and we can express
7 (P (B)) as . :
3. ? (B (B) = 0 (B (B)) = max |5, ()]
From (2.7) and (2.8), it follows that
B 1225, Con (/e (B))] -~
5:7) v B) =0 im0 =
and from (1.3) and (2.8),
, ~ _ 1
3.7) T (pn(B)) = Cotjem)’ ™ =0.

To simplify the expression in (3.7), we recall from (2.8) that C,, (1/¢(B))=

cosh (m o), where COShU:Q—;B_)” and ¢ (B)<<1. Thus, C,,(1/o (B)) = em”(_1ﬂ> )
and since o =In {———1 fffff ijw— 1}, we have that e %= { e(B) "
ACRE e 1= (B)
From Younc’s basic formula [26] we can relate e=™7 to the quantity w, in
(2.15), and we have that e™”%=(w,—1)"* Combining, we now write (3.7') as

p = — 1 \MI2, 2 _ =
6.8) T (pa(B) = (0 — )" [ 2, w0,
Since 12’;2 <1 for 0= x<1, it follows that the right side of (3.8) is less than

unity, and is strictly decreasing with increasing . Thus, we conclude that the
matrix operator p,,(B) for the Chebyshev semi-iterative method is norm reducing
for all m=1.
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For the successive overrelaxation iterative method, or equivalently for the

second order Richardson iterative methods with a=wm and f=—1, we have
the following recurrence relation for the error vectors of the iterates of (2.17):
(3.9) Tt = BEM 1 (1 — @) €Y, m=1,

where " =% — 7 3,0, so that 3© and 3 are dependent on the given vectors
£@ and {0, If oy (B) =1, and o, (B)=w B, we define now the polynomials o, (B)
from the recurrence relation

(3.10) %y (B) =@ Bo, (B) (1 —w) e, (B), =1,

By induction, o, (B) is, for @ ==0, a polynomial of degree m in B, and it is casily
verified that '

—

(3.11) M =g, (B)EV | (1—w)a, (B3O m=2.

Upon replacing the matrix B by the variable x in (3.10), the linear difference
equation of (3.10) can be solved, and o, (x) can be explicitly represented by

g (x) — gt (2) L

(3.12) %, (%) :{ (%) =@ (x) %@ + () ) m=0,
(1) ¢ (), ¢ =ga(x))

where @, (x) and @, (%) are the roots of the equation

(3.13) | P (%) —w xp(x) - (0 —1) =0

It w=aw, of (2.15), and — g (B)< x=-}¢(B), then as shown in [6], all the roots
of (3.13) are complex conjugates of the form (w, —1)* e%*?, where cos 9= x/o (B).
Consequently,

sin (m—+1) ¢

A_—_STD 9 ) ﬁ :*: O) 7T,
(3.14) oy (%) = (e, — 1)™2- A, §—0, [ m=0.

(=" m+1), d=m,
It is clear from (3.11) that €% depends on the relat1onsh1p between @ and W,

For example, if €0= —7%3© and w=w,, then

(3.15) =g (B)EY, m=2,

where

(3.16) 1 (B) = —[0_1 (B) + (0 — 1) o, 5 (B)],  m=2.
From the symmetry of the matrix B, we have that

(3.47) T2 (B)] = 0[5 1(B)] = max | gy ()],

but from (3.14), we can directly express 7[g,,_;(B)] as

347)  tlaBI=(0,—1) * {m|+|m—1](@,— 13, m=0.
We note that this spectral norm can actually initially increase with m, if w, is
sufficiently large*.

* An analogous observation was made by SHELDON [1§] in the cyclic case. See
also §5.
11%
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We shall now show that the situation of (3.17’) can be considerably improved.
Let

(3.18) (v — BLO 4,

so that

(319) 7O — B3O,

For 51) selected in this way, then

(3.20) " =y, (B)E®, m=z=2,

where 7,,(B) is a polynomial of degree m in B defined recursively, using (3.11)
and (3.19), by

(3-21) 7w(B) = Bo, 1(B) + (1 —w)a, ,(B), m=2,
with 7, (B)=1, and 7 (B) = B.

Again,
(3.22) (1, (B)] = @[ra(B)] = max |7, ()], ~m=0,

and, for the case w=w,, a short calculation [7, pp.22—23] based on (3.14)
shows that

5.23)  Tln(B)]=|rme(B)| = (0, — )" {1+ m)1—e(B)}, m=o0.

It is readily verified [7, pp. 23—24] that the right side of (3.23) is monotone
decreasing for all m=0, showing that the matrix operator for the successive
overrelaxation iterative method of (2.17) is also norm reducing for m=1 with
¢W chosen according to (3.18).

While the Chebyshev semi-iterative method of (2.9) requires but one
vector guess fO=r®, (2.9) shows that O also satisfies (3.18), so that we can
directly compare the spectral norm (3.8) of the Chebyshev semi-iterative
method with the spectral norm (3.23) of the primitive successive overrelaxation
iterative with Zj(” chosen according to (3.18) method. Now, since 7,(¥)=1, and
7, (%)=, it follows easily from (3.21) and (3.10) that 7,,(1)=1 for all m=0.
But from (2.7), the same is true of the polynomials {bm(x) Moreover, since
t[1,,(B)]=|7,(0(B))], and similarly 7[5, (B)]=|pn(0(B))], we can use, as in
(2.6), the well known property of the Chebyshev polynomials that among
all polynomials g, (x) of degree m with g, (1)=1, Do (%) Is the unigque polynomial
whose maximum absolute value on the interval — o (B)= x= -+ ¢ (B) is minimal.
This gives us

Lemma 1. In the primitive case where £ is arbitrary and = BC(°)+g

(3.24) 7(pu(B)) <7 (r,(B)), m>1.

We shall now consider the successive overrelaxation iterative method with
another starting procedure*. Let

{0 =B+
C(z) = BC(” +%,

* Such a starting procedure is suggested for the primitive case from results in
the cyclic case by SueLDON [12]. See also §5.

(3.25)
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and £ (m=3) we generated by (2.17). Then

(3.26) W = BEO), @ — B2EO
and in general
(3 27) :g(m) = tm (B> Tg(o): m=0,

where the matrix £, (B) is a polynomial of degree m in the matrix B, and is
defined recursively by

<328) Zm(B):Bzmmk2(B)+(1“w)BO€m~3(B)’ WLE&,
where £ (B)= B/ for 0=<7<2. Again,
(.29 Lty (B)] = o[t (B)] = max |ind] . m=0,

and for w=wm,, a short calculation based on (3.14) shows that

m—1

(3:30) T[tu(B)] =1, ((B))] = (w,—1) * o(B){{14(m—1) )1 —g*(B)}, m=1.

With s, () =", corresponding to the basic iterative method of (2.1), it is not
difficult to show that

(3.31) (1, (B)) <7 (t,(B)) <7(s,(B))=¢"(B) for m>1.
Consequently, we have

Theorem 1. In the primitive case where 80) is arbitrary and ETD:BETOMF;?,
then for 0<<p (B)<<1, and m>1,

(3.32) (B (B)) < (1, (B) < (£, (B)) < 7 (5,,(B)) = 0" (B).

Thus, the spectral norm of the matrix operator for m>1 iterations of the
Chebyshev semi-iterative method is less than the spectral norms of the matrix
operators for m iterations of the two variants (3.18) and (3.25) of the successive
overrelaxation iterative method, as well as the spectral norms for m iterations of
the iterative method of (2.1).
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